Recent Advances in 3D Bioprinted Tumor Microenvironment

Jinseung Bae1, Seogkyu Han1, Sungsu Park1
1School of Mechanical Engineering, Sungkyunkwan University, Suwon, Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dzobo, K., Motaung, K.S.C.M. & Adesida, A. Recent trends in decellularized extracellular matrix bioinks for 3D printing: An updated review. Int. J. Mol. Sci.20, 4628 (2019).

Murphy, S.V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol.32, 773–785 (2014).

Zhang, Y.S., Duchamp, M., Oklu, R., Ellisen, L.W., Langer, R. & Khademhosseini, A. Bioprinting the cancer microenvironment. ACS Biomater. Sci. Eng.2, 1710–1721 (2016).

Knowlton, S., Onal, S., Yu, C.H., Zhao, J.J. & Tasoglu, S. Bioprinting for cancer research. Trends Biotechnol.33, 504–513 (2015).

Peela, N., Truong, D., Saini, H., Chu, H., Mashaghi, S., Ham, S.L., Singh, S., Tavana, H., Mosadegh, B. & Nikkhah, M. Advanced biomaterials and micro-engineering technologies to recapitulate the stepwise process of cancer metastasis. Biomaterials133, 176–207 (2017).

Jabłońska-Trypuć, A., Matejczyk, M. & Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme Inhib. Med. Chem.31, 177–183 (2016).

Cirri, P. & Chiarugi, P. Cancer associated fibro-blasts: the dark side of the coin. Am. J. Cancer Res.1, 482–497 (2011).

Xu, J., Lamouille, S. & Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell Res.19, 156–172 (2009).

Liu, T., Han, C., Wang, S., Fang, P., Ma, Z., Xu, L. & Yin, R. Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J. Hematol. Oncol.12, 86 (2019).

Katayama, Y., Uchino, J., Chihara, Y., Tamiya, N., Kaneko, Y., Yamada, T. & Takayama, K. Tumor neovascularization and developments in therapeutics. Cancers11, 316 (2019).

Muz, B., de la Puente, P., Azab, F. & Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl)3, 83–92 (2015).

Gonzalez, H., Hagerling, C. & Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev.32, 1267–1284 (2018).

Gu, Z., Fu, J., Lin, H. & He, Y. Development of 3D bioprinting: from printing methods to biomedical applications. Asian J. Pharm. Sci. (2019). in press.

Munaz, A., Vadivelu, R.K., John, J.S., Barton, M., Kamble, H. & Nguyen, N.-T. Three-dimensional printing of biological matters. J. Sci. Adv. Mater. Devices1, 1–17 (2016).

Schiele, N.R., Corr, D.T., Huang, Y., Raof, N.A., Xie, Y. & Chrisey, D.B. Laser-based direct-write techniques for cell printing. Biofabrication2, 032001 (2010).

Zhang, Z., Wang, B., Hui, D., Qiu, J. & Wang, S. 3D bioprinting of soft materials-based regenerative vascular structures and tissues. Compos. B Eng.123, 279–291 (2017).

Masaeli, E. & Marquette, C. Direct-write bioprinting approach to construct multilayer cellular tissues. Front. Bioeng. Biotechnol.7, 478 (2020).

Xu, C., Zhang, M., Huang, Y., Ogale, A., Fu, J. & Markwald, R.R. Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink. Langmuir30, 9130–9138 (2014).

Norotte, C., Marga, F.S., Niklason, L.E. & Forgacs, G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials30, 5910–5917 (2009).

Osidak, E.O., Karalkin, P.A., Osidak, M.S., Parfenov, V.A., Sivogrivov, D.E., Pereira, F.D.A.S., Gryadunova, A.A., Koudan, E.V., Khesuani, Y.D., Kasyanov, V.A., Belousov, S.I., Krasheninnikov, S.V., Grigoriev, T.E., Chvalun, S.N., Bulanova, E.A., Mironov, V.A. & Domogatsky, S.P. Viscoll collagen solution as a novel bioink for direct 3D bioprinting. J. Mater. Sci.: Mater. Med.30, 31 (2019).

Wang, X., Ao, Q., Tian, X., Fan, J., Tong, H., Hou, W. & Bai, S. Gelatin-based hydrogels for organ 3D bioprinting. Polymers9, 401 (2017).

Xu, M., Wang, X., Yan, Y., Yao, R. & Ge, Y. An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix. Biomaterials31, 3868–3877 (2010).

Yi, H.-G., Jeong, Y.H., Kim, Y., Choi, Y.-J., Moon, H.E., Park, S.H., Kang, K.S., Bae, M., Jang, J., Youn, H., Paek, S.H. & Cho, D.-W. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat. Biomed. Eng.3, 509–519 (2019).

Yue, K., Trujillo-de Santiago, G., Alvarez, M.M., Tamayol, A., Annabi, N. & Khademhosseini, A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials73, 254–271 (2015).

Van Den Bulcke, A.I., Bogdanov, B., De Rooze, N., Schacht, E.H., Cornelissen, M. & Berghmans, H. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules1, 31–38 (2000).

Sun, M., Sun, X., Wang, Z., Guo, S., Yu, G. & Yang, H. Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue. Polymers10, 1290 (2018).

Zhao, Y., Yao, R., Ouyang, L., Ding, H., Zhang, T., Zhang, K., Cheng, S. & Sun, W. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication6, 035001 (2014).

Park, J.A., Yoon, S., Kwon, J., Now, H., Kim, Y.K., Kim, W.-J., Yoo, J.-Y. & Jung, S. Freeform micro-patterning of living cells into cell culture medium using direct inkjet printing. Sci. Rep.7, 14610 (2017).

Mirani, B., Pagan, E., Shojaei, S., Duchscherer, J., Toyota, B.D., Ghavami, S. & Akbari, M. A 3D bio-printed hydrogel mesh loaded with all-trans retinoic acid for treatment of glioblastoma. Eur. J. Pharmacol.854, 201–212 (2019).

Wang, X., Dai, X., Zhang, X., Ma, C., Li, X., Xu, T. & Lan, Q. 3D bioprinted glioma cell-laden scaffolds enriching glioma stem cells via epithelial-mesenchymal transition. J. Biomed. Mater. Res., Part A107, 383–391 (2019).

Diao, J., Zhang, C., Zhang, D., Wang, X., Zhang, J., Ma, C., Deng, K., Jiang, T., Jia, W. & Xu, T. Role and mechanisms of a three-dimensional bioprinted microtissue model in promoting proliferation and invasion of growth-hormone-secreting pituitary adenoma cells. Biofabrication11, 025006 (2019).

Wang, X., Li, X., Dai, X., Zhang, X., Zhang, J., Xu, T. & Lan, Q. Bioprinting of glioma stem cells improves their endotheliogenic potential. Colloids Surf. B. Biointerfaces171, 629–637 (2018).

Wang, X., Li, X., Dai, X., Zhang, X., Zhang, J., Xu, T. & Lan, Q. Coaxial extrusion bioprinted shell-core hydrogel microfibers mimic glioma microenvironment and enhance the drug resistance of cancer cells. Colloids Surf. B. Biointerfaces171, 291–299 (2018).

Dai, X., Ma, C., Lan, Q. & Xu, T. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication8, 045005 (2016).

Lee, C., Abelseth, E., de la Vega, L. & Willerth, S.M. Bioprinting a novel glioblastoma tumor model using a fibrin-based bioink for drug screening. Mater. Today Chem.12, 78–84 (2019).

Mollica, P.A., Booth-Creech, E.N., Reid, J.A., Zamponi, M., Sullivan, S.M., Palmer, X.-L., Sachs, P.C. & Bruno, R.D. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater.95, 201–213 (2019).

Duchamp, M., Liu, T., van Genderen, A.M., Kappings, V., Oklu, R., Ellisen, L.W. & Zhang, Y.S. Sacrificial bioprinting of a mammary ductal carcinoma model. Biotechnol. J.14, 1700703 (2019).

Kingsley, D.M., Roberge, C.L., Rudkouskaya, A., Faulkner, D.E., Barroso, M., Intes, X. & Corr, D.T. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. Acta Biomater.95, 357–370 (2019).

Wang, X., Zhang, X., Dai, X., Wang, X., Li, X., Diao, J. & Xu, T. Tumor-like lung cancer model based on 3D bioprinting. 3 Biotech8, 501 (2018).

Berg, J., Hiller, T., Kissner, M.S., Qazi, T.H., Duda, G.N., Hocke, A.C., Hippenstiel, S., Elomaa, L., Weinhart, M., Fahrenson, C. & Kurreck, J. Optimization of cell-laden bioinks for 3D bioprinting and efficient infection with influenza A virus. Sci. Rep.8, 13877 (2018).

Hou, S., Tiriac, H., Sridharan, B.P., Scampavia, L., Madoux, F., Seldin, J., Souza, G.R., Watson, D., Tuveson, D. & Spicer, T.P. Advanced development of primary pancreatic organoid tumor models for high-throughput phenotypic drug screening. SLAS Discov.23, 574–584 (2018).

Hakobyan, D., Médina, C., Dusserre, N., Stachowicz, M.-L., Handschin, C., Fricain, J.-C., Guillermet-Guibert, J. & Oliveira, H. Laser-assisted 3D bio-printing of exocrine pancreas spheroid models for cancer initiation study. Biofabrication12, 035001 (2020).

Ma, X., Yu, C., Wang, P., Xu, W., Wan, X., Lai, C.S.E., Liu, J., Koroleva-Maharajh, A. & Chen, S. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture. Biomaterials185, 310–321 (2018).

Zhou, X., Liu, C., Zhao, X. & Wang, X. A 3D bio-printing liver tumor model for drug screening. World J. Pharm. Pharm. Sci.5, 196–213 (2016).

Schmidt, S.K., Schmid, R., Arkudas, A., Kengelbach-Weigand, A. & Bosserhoff, A.K. Tumor cells develop defined cellular phenotypes after 3D-bio-printing in different bioinks. Cells8, 1295 (2019).

Mondal, A., Gebeyehu, A., Miranda, M., Bahadur, D., Patel, N., Ramakrishnan, S., Rishi, A.K. & Singh, M. Characterization and printability of Sodium alginate-Gelatin hydrogel for bioprinting NSCLC co-culture. Sci. Rep.9, 19914 (2019).

Hermida, M.A., Kumar, J.D., Schwarz, D., Laverty, K.G., Di Bartolo, A., Ardron, M., Bogomolnijs, M., Clavreul, A., Brennan, P.M., Wiegand, U.K., Melchels, F.P., Shu, W. & Leslie, N.R. Three dimensional in vitro models of cancer: Bioprinting multilineage glioblastoma models. Adv. Biol. Regul.75, 100658 (2020).

Jiang, T., Munguia-Lopez, J.G., Flores-Torres, S., Grant, J., Vijayakumar, S., De Leon-Rodriguez, A. & Kinsella, J.M. Directing the self-assembly of tumour spheroids by bioprinting cellular heterogeneous models within alginate/gelatin hydrogels. Sci. Rep.7, 4575 (2017).

Vinson, B.T., Phamduy, T.B., Shipman, J., Riggs, B., Strong, A.L., Sklare, S.C., Murfee, W.L., Burow, M.E., Bunnell, B.A. & Huang, Y. Laser direct-write based fabrication of a spatially-defined, biomimetic construct as a potential model for breast cancer cell invasion into adipose tissue. Biofabrication9, 025013 (2017).

Zhou, X., Zhu, W., Nowicki, M., Miao, S., Cui, H., Holmes, B., Glazer, R.I. & Zhang, L.G. 3D bio-printing a cell-laden bone matrix for breast cancer metastasis study. ACS Appl. Mater. Interfaces8, 30017–30026 (2016).

Meng, F., Meyer, C.M., Joung, D., Vallera, D.A., McAlpine, M.C. & Panoskaltsis-Mortari, A. 3D bioprinted in vitro metastatic models via reconstruction of tumor microenvironments. Adv. Mater.31, 1806899 (2019).

Xie, M., Gao, Q., Qiu, J., Fu, J., Chen, Z. & He, Y. 3D biofabrication of microfiber-laden minispheroids: a facile 3D cell co-culturing system. Biomater. Sci.8, 109–117 (2020).

Langer, E.M., Allen-Petersen, B.L., King, S.M., Kendsersky, N.D., Turnidge, M.A., Kuziel, G.M., Riggers, R., Samatham, R., Amery, T.S., Jacques, S.L., Sheppard, B.C., Korkola, J.E., Muschler, J.L., Thibault, G., Chang, Y.H., Gray, J.W., Presnell, S.C., Nguyen, D.G. & Sears, R.C. Modeling tumor phenotypes in vitro with three-dimensional bioprinting. Cell Rep.26, 608–623 (2019).

Xu, F., Celli, J., Rizvi, I., Moon, S., Hasan, T. & Demirci, U. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol. J.6, 204–212 (2011).

van Pel, D.M., Harada, K., Song, D., Naus, C.C. & Sin, W.C. Modelling glioma invasion using 3D bioprinting and scaffold-free 3D culture. J. Cell Commun. Signal.12, 723–730 (2018).

Reid, J.A., Palmer, X.-L., Mollica, P.A., Northam, N., Sachs, P.C. & Bruno, R.D. A 3D bioprinter platform for mechanistic analysis of tumoroids and chimeric mammary organoids. Sci. Rep.9, 7466 (2019).

Dai, X., Liu, L., Ouyang, J., Li, X., Zhang, X., Lan, Q. & Xu, T. Coaxial 3D bioprinting of self-assembled multicellular heterogeneous tumor fibers. Sci. Rep.7, 1457 (2017).

Swaminathan, S., Hamid, Q., Sun, W. & Clyne, A.M. Bioprinting of 3D breast epithelial spheroids for human cancer models. Biofabrication11, 025003 (2019).

Wang, Y., Shi, W., Kuss, M., Mirza, S., Qi, D., Krasnoslobodtsev, A., Zeng, J., Band, H., Band, V. & Duan, B. 3D bioprinting of breast cancer models for drug resistance study. ACS Biomater. Sci. Eng.4, 4401–4411 (2018).

Whiteside, T.L. The role of immune cells in the tumor microenvironment. Cancer Treat. Res. 103–124 (2006).

Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. Nature383, 787–793 (1996).

Harty, J.T., Tvinnereim, A.R. & White, D.W. CD8+ T cell effector mechanisms in resistance to infection. Annu. Rev. Immunol.18, 275–308 (2000).

Guermonprez, P., Valladeau, J., Zitvogel, L., Théry, C. & Amigorena, S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol.20, 621–667 (2002).

Hu, W., Wang, G., Huang, D., Sui, M. & Xu, Y. Cancer immunotherapy based on natural killer cells: current progress and new opportunities. Front. Immunol.10, 1205 (2019).

Braham, M.V.J., Ahlfeld, T., Akkineni, A.R., Minnema, M.C., Dhert, W.J.A., Öner, F.C., Robin, C., Lode, A., Gelinsky, M. & Alblas, J. Endosteal and perivascular subniches in a 3D bone marrow model for multiple myeloma. Tissue Eng. Part C Methods24, 300–312 (2018).

Heinrich, M.A., Bansal, R., Lammers, T., Zhang, Y. S., Schiffelers, R.M. & Prakash, J. 3D-bioprinted minibrain: A glioblastoma model to study cellular interactions and therapeutics. Adv. Mater.31, 1806590 (2019).

Han, S., Kim, S., Chen, Z., Shin, H.K., Lee, S.-Y., Moon, H.E., Paek, S.H. & Park, S. 3D bioprinted vascularized tumour for drug testing. Int. J. Mol. Sci.21, 2993 (2020).