Recent Advances in 1D Electrospun Nanocatalysts for Electrochemical Water Splitting

SMALL STRUCTURES - Tập 2 Số 2 - 2021
Longcheng Zhang1, Haitao Zhao1, Siran Xu1, Qian Liu1, Tingshuai Li1, Yonglan Luo1, Shuyan Gao2, Xifeng Shi3, Abdullah M. Asiri4, Xuping Sun1
1Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
2School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, Henan, China
3College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
4Chemistry Department, Faculty of Science and Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Tóm tắt

Electrochemical water splitting, as a promising sustainable‐energy technology, has been limited by its slow kinetics and large overpotential. This shortcoming necessitates the design of 1D nanocatalysts with large surface area, high electronic conductivity, and easily tunable composition. Herein, recent progress about electrocatalytic water splitting based on the advanced electrospun nanomaterials is reviewed. First, the related fundamentals of electrochemical water splitting according to two main aspects are discussed as follows: hydrogen evolution reaction and oxygen evolution reaction. Second, the structure design and the electrocatalytic properties of electrospun nanomaterials according to difference in component (including single metal‐based electrocatalysts, metal alloy‐based electrocatalysts, metal oxide‐based electrocatalysts, metal sulfide‐based electrocatalysts, metal phosphide‐based electrocatalysts, metal carbide‐based electrocatalysts, etc.) are summarized. Finally, the future perspectives and challenges for designing next‐generation 1D electrospun nanocatalysts for electrochemical water splitting are concluded.

Từ khóa


Tài liệu tham khảo

10.1039/C4EE01760A

10.1021/acsnano.0c02731

10.1039/D0SE00240B

10.1002/aenm.201700020

10.1002/adma.201602270

10.1016/j.electacta.2015.03.077

10.1007/s10008-006-0248-2

10.1021/acs.jpcc.5b11868

10.1016/j.cej.2019.03.144

10.1002/anie.201402822

10.1039/C6TA08075H

10.1002/smtd.201900575

10.1002/adfm.201910768

Jiang S., 2019, Small, 16, 1903760

10.1007/s10008-012-1888-z

10.1016/j.matdes.2016.07.060

10.1016/j.micromeso.2009.08.030

10.1016/j.snb.2009.05.038

10.1021/nl050108i

10.1039/D0TA03963B

10.1039/D0TA05100D

10.1126/science.aay9033

10.1016/j.jpowsour.2020.228438

10.1039/C8NR00695D

10.1039/C6CP04958C

10.1039/C8TA04684K

10.1039/C4TA06044J

10.1002/adma.201400173

10.1021/ja068165g

10.1002/aenm.201301448

10.1038/nnano.2013.84

10.1016/j.apsusc.2016.12.242

10.1016/j.cattod.2015.10.006

10.1021/acs.chemrev.9b00248

10.1016/S0032-3861(01)00336-6

10.1002/smll.201805103

10.1002/adma.201502696

10.1039/C9QI00799G

10.1039/C4CS00448E

10.1021/acsenergylett.8b00640

10.1021/ja511559d

10.1039/c2ee02618j

10.1039/C3CS60468C

10.1016/j.nanoen.2016.04.017

10.1021/cr100246c

10.1016/j.elecom.2015.12.012

10.1038/ncomms13638

10.1039/C8NR07891B

10.1002/adma.201807134

10.1039/C8TA06529B

10.1039/C6CS00328A

10.1021/acscatal.9b05445

10.1002/cctc.201000397

Pauli C., 2002, J. Electroanal. Chem., 538, 145, 10.1016/S0022-0728(02)01055-0

10.1002/celc.201600072

Fan X., 2018, Nat. Commun., 1, 1809, 10.1038/s41467-018-04248-y

10.1016/j.matlet.2018.11.160

Dosunmu O., 2006, Nanotechnology, 4, 1123, 10.1088/0957-4484/17/4/046

10.1002/advs.201700226

10.1039/C4NR07243J

10.1021/acsami.7b12247

10.1021/acsami.8b14563

10.1002/cctc.201501326

Zeleny J., 1917, Phys. Rev., 10, 414, 10.1103/PhysRev.10.1

10.1002/adma.200400719

Reneke D. H., 1996, Nanotechnology, 7, 216, 10.1088/0957-4484/7/3/009

10.1016/j.polymer.2004.02.056

10.1039/C8TB01706A

10.1002/pola.10609

10.1021/nl802910h

10.1016/j.jpowsour.2018.12.014

10.1016/j.nanoen.2016.02.014

10.1039/C7CP03208K

10.1039/C6TA04244A

10.1149/2.0351815jes

10.1016/j.jpowsour.2016.02.012

10.1016/j.electacta.2015.01.197

10.1016/j.ijhydene.2016.08.058

10.1016/j.jcis.2019.02.084

10.1039/C6TA01541G

10.1038/367252a0

Yue X., 2020, Catal. Sci. Technol., 1, 215, 10.1039/C9CY02092F

10.1039/C4CP00385C

10.1002/adfm.201805828

10.1002/advs.201902371

10.1021/acsami.6b05245

Zhao Z., 2015, J. Mater. Chem. A, 2, 7179, 10.1039/C5TA00160A

10.1016/j.jcis.2017.12.028

10.1002/admi.201700005

10.1021/acsami.7b01418

10.1021/ja201269b

10.1002/anie.201402646

10.1016/j.jcat.2015.03.012

10.1021/acsami.7b14399

10.1007/BF01023602

10.1149/1.2108984

10.1016/S0022-4596(03)00340-2

Cheng F., 2011, J. Chen, Nat. Chem., 3, 79, 10.1038/nchem.931

10.1039/C5RA06368J

10.1016/j.ijhydene.2018.06.102

10.1016/j.apsusc.2019.06.160

10.1016/j.matlet.2016.06.060

10.1016/j.electacta.2018.08.130

10.1039/C7RA11330G

10.1088/2053-1591/ab51aa

10.1088/2053-1591/3/9/095018

10.1016/j.electacta.2018.01.065

10.1149/07514.0955ecst

10.1002/admi.201700146

10.1038/nature02863

10.1038/ncomms3439

10.1039/C5MH00096C

10.1002/admi.201900565

10.1002/admi.201600825

10.1039/C5TA04426J

10.1021/acsami.5b09447

10.1039/c4ta01004c

10.1016/j.jcis.2016.03.041

10.1039/C8DT04656E

10.1021/acsaem.8b00010

10.1039/C4NR02014F

10.1021/acssuschemeng.8b05462

10.3365/KJMM.2018.56.12.885

10.1039/C5TA03766B

10.1088/1361-6528/aa5c2f

10.1039/C7TA08166A

10.1016/j.cej.2017.07.056

10.1039/C5CY02292D

10.1002/smll.202002432

10.1088/1361-6528/aacfd7

10.1039/C6QI00229C

10.1016/j.ijhydene.2017.11.096

10.1039/C7NH00066A

10.1039/C7NR05825J

10.1016/j.ensm.2017.11.006

10.1016/j.electacta.2018.08.118

10.1016/j.apcatb.2018.11.083

10.1002/aenm.201800555

10.1002/anie.201710150

10.1002/cssc.201700207

10.1021/acssuschemeng.9b04643

10.1016/j.chempr.2016.06.001

10.1002/anie.201804673

10.1002/celc.201900513

10.1007/s10853-017-1030-9

10.1016/j.scib.2020.02.003

10.1002/adma.201903605

10.1364/BOE.8.000112

10.1021/acsami.9b16390

10.1016/j.cej.2019.123655

10.1021/ar300361m

10.1016/j.joule.2018.06.019

10.1021/acsnano.7b02148

10.1002/anie.201309248

10.1039/C8EE03276A

10.1016/j.ijhydene.2019.11.204

10.1002/anie.201607405

10.1002/aenm.201602068

10.1016/j.mtphys.2020.100280

10.1021/acs.chemrev.8b00593

10.1016/j.mattod.2015.11.010