Real-time illumination and shadow invariant lane detection on mobile platform
Tóm tắt
Từ khóa
Tài liệu tham khảo
Nedevschi, S., Schmidt, R., Graf, T., Danescu, R., Frentiu, D., Marita, T., Oniga, F., Pocol, C.: 3D lane detection system based on stereovision. In: 7th International IEEE Conference on Intelligent Transportation Systems, pp. 161–166 (2004)
Gao, F., Jiang, D., Xu, G., Cui, Y., Wang, X.: A 3D curve lane detection and tracking system based on stereovision. CICTP 2012, 1247–1258 (2012)
Chunzhao, G., Mita, S., McAllester, D.: Lane detection and tracking in challenging environments based on a weighted graph and integrated cues. In: Intelligent Robots and Systems, pp. 5543–5550 (2010)
Gaikwad, V., Lokhande, S.: Lane departure identification for advanced driver assistance. IEEE Trans. Intell. Transp. Syst. 16(2), 910–918 (2015)
Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15, 11–15 (1972)
Borkar, A., Hayes, M., Smith, M.T.: A novel lane detection system with efficient ground truth generation. IEEE Trans. Intell. Transp. Syst. 13(1), 365–374 (2012)
Bertozzi, M., Broggi, A.: GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Trans. Image Process. 7, 62–81 (1998)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)
Tapia-Espinoza, R., Torres-Torriti, M.: Robust lane sensing and departure warning under shadows and occlusions. Sensors 3(1), 3270–3298 (2013)
Torr, P.H.S., Zisserman, A.: MLESAC: a new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 78, 138–156 (1996)
Yoo, H., Yang, U., Sohn, K.: Gradient-enhancing conversion for illumination-robust lane detection. IEEE Trans. Intell. Transp. Syst. 14(3), 1083–1094 (2013)
You, F., Zhang, R., Zhong, L., Wang, H., Xu, J.: Lane detection algorithm for night-time digital image based on distribution feature of boundary pixels. J. Opt. Soc. Korea 17(2), 188–199 (2013)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)
Mammeri, A., Boukerche, A., Tang, Z.: A real-time lane marking localization, tracking and communication system. Comput. Commun. 73, 132–143 (2016)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of British Machine Vision Conference, pp. 384–396 (2002)
Stephens, R.S.: Probabilistic approach to the Hough transform. Image Vis. Comput. 9(1), 66–71 (1991)
Küçükyıldız, G., Ocak, H.: Development and optimization of a DSP-based real-time lane detection algorithm on a mobile platform. Turkish J. Electr. Eng. Comput. Sci. 22(6), 1484–1500 (2012)
Kim, J., Kim, J., Jang, G., Lee, M.: Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection. Neural Netw. 87, 109–121 (2017)
Tveit, A., Morland, T., Rost, T.: DeepLearningKit—an GPU optimized deep learning framework for Apple’s iOS, OS X and tvOS developed in Metal and Swift. arXiv:1605.04614 (2016)
Aly, M.: Real time detection of lane Markings in urban streets. In: 2008 IEEE Intelligent Vehicle Symposium, pp. 7–12 (2008)
Kumar, A.M., Simon, P.: Review of lane detection and tracking algorithms in advanced driver assistance system. Int. J. Comput. Sci. Inf. Technol. 7(4), 65–78 (2015)