Dự đoán theo thời gian thực về COVID-19 bằng mô hình fuzzy-grey Markov: một phương pháp khác trong quy trình ra quyết định

Springer Science and Business Media LLC - Tập 41 - Trang 1-26 - 2022
D. Nagarajan1, R. Sujatha2, G. Kuppuswami3, J. Kavikumar4
1Department of Mathematics, Rajalakshmi Institute of Technology, Chennai, India
2School of Science and Humanities (Mathematics), Shiv Nadar University, Chennai, India
3Department of Mathematics, Sri Venkateswaraa College of Technology, Chennai, India
4Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh, Malaysia

Tóm tắt

Đại dịch COVID-19 do virus SARS-CoV-2 đang diễn ra là một căn bệnh lây nhiễm cao và đã nhanh chóng lan rộng trên toàn cầu, ảnh hưởng đến hàng triệu người. Con người chưa từng chứng kiến một căn bệnh tử thần như vậy cho đến nay, và do không có thuốc đặc hiệu hay vắc-xin, tỷ lệ tử vong của căn bệnh này đang gia tăng theo cấp số nhân. Tình hình hiện tại đã làm trầm trọng thêm nỗi lo lắng và sợ hãi của con người. Bởi vì đại dịch này, thế giới đang đi trên một con đường khác. Thế giới đã hồi phục từ nhiều thảm họa, nhưng đây hoàn toàn là một tình huống khác. Thế giới ngày nay đang phải vật lộn bằng nhiều cách để thoát khỏi căn bệnh này. Mặt khác, số người hồi phục khỏi căn bệnh này mang lại cho chúng ta chút an ủi. Tuy nhiên, chúng ta phải thực hiện các biện pháp phòng ngừa khẩn cấp để kiểm soát căn bệnh này bằng tất cả các cách có thể. Do đó, dự báo là một trong những cách để thực hiện các biện pháp phòng ngừa cần thiết. Trong bài báo này, bằng cách sử dụng mô hình fuzzy-grey-Markov, chúng tôi dự đoán số ca bệnh và số ca hồi phục, cũng như số ca tử vong, sử dụng dữ liệu thời gian thực với nhiều cách tiếp cận khác nhau và so sánh với dữ liệu thực tế. Nghiên cứu kết luận với các khuyến nghị quan trọng dành cho chính phủ Ấn Độ nhằm quản lý tình hình COVID-19 một cách chủ động.

Từ khóa

#COVID-19 #dự đoán theo thời gian thực #mô hình fuzzy-grey-Markov #quản lý khủng hoảng #chăm sóc sức khỏe

Tài liệu tham khảo

Arji G, Ahmadi H, Nilashi M, Rashid TA, Ahmed OH, Aliojo N, Zainol A (2019) Fuzzy logic approach for infectious disease diagnosis: a methodical evaluation, literature and classification. Biocybern Biomed Eng 39(4):937–955. https://doi.org/10.1016/j.bbe.2019.09.004 Baz A, Alhakami A, Alshareef E (2020) A framework of computational model for predicting the spread of COVID-19 pandemic in Saudi Arabia. Int J Intell Eng Syst 13(5):463–475. https://doi.org/10.22266/ijies2020.1031.41 Bherwani H (2020) Understanding Covid-19 transmission through Bayesian probabilistic modeling and GIS-based Voronoi approach: a policy perspective. Environ Dev Sustain 23:5846–5864. https://doi.org/10.1007/s10668-020-00849-0 Boccaletti S, Ditto W, Mindlin G, Atangana A (2020) Modeling and forecasting of epidemic spreading: the case of Covid-19 and beyond. Chaos Solitons Fractals 135:109794. https://doi.org/10.1016/j.chaos.2020.109794 Castillo O, Melin P (2020) Forecasting of Covid-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic. Chaos Solitons Fractals 140:110242. https://doi.org/10.1016/j.chaos.2020.110242 Castillo O, Melin P (2021) A novel method for a Covid-19 classification of countries based on an intelligent fuzzy fractal approach. Healthcare 9(2):196. https://doi.org/10.3390/healthcare9020196 Ceylan Z (2021) Short-term prediction of Covid-19 spread using grey rolling model optimized by particle swarm optimization. Appl Soft Comput 109:107592. https://doi.org/10.1016/j.asoc.2021.107592 Chowdhury AA, Hasan KT, Hoque KKS (2021) Analysis and prediction of Covid-19 pandemic in Bangladesh by using ANFIS and LSTM network. Cogn Comput 13:761–770. https://doi.org/10.1007/s12559-021-09859-0 Dattner I, Huppert A (2018) Modern statistical tools for inference and prediction of infectious diseases using mathematical models. Stat Methods Med Res 27(7):1927–1929. https://doi.org/10.1177/0962280217746456 Deepak P, Divya M, Suyash B, Mayank A (2020) Fuzzy rule based system to predict Covid19—a deadly virus. Int J Manag Humanit 4(8):78–82. https://doi.org/10.35940/ijmh.H0781.044820 Dhamodharavadhani S, Rathipriya R, Chatterjee JM (2020) Covid-19 mortality rate prediction for Indian using statistical neural network models. Front Public Health 8:441. https://doi.org/10.3389/fpubh.2020.00441 Ding C, Chen Y, Liu Z, Liu T (2021) Prediction on transmission trajectory of Covid-19 based on particle swarm algorithm. Pattern Recognit Lett 152:70–78. https://doi.org/10.1016/j.patrec.2021.09.003 Gao J, Li J, Wang M (2020) Time series analysis of cumulative incidences of typhoid and paratyphoid fevers in China using both Grey and SARIMA models. PLoS One 15(10):e0241217. https://doi.org/10.1371/journal.pone.0241217 Geng N, Yong Z, Sun Y, Jiang Y, Chen D (2015) Forecasting China’s annual biofuel production using an improved grey model. Energies 8(10):12080–12099. https://doi.org/10.3390/en81012080 Innocent PR, John RI, Garibald GM (2005) Fuzzy methods for medical diagnosis. Appl Artif Intell 19(1):69–98. https://doi.org/10.1080/08839510590887414 Iqelan BM (2017) Forecasts of female breast cancer referrals using Grey prediction model GM(1,1). Appl Math Sci 11(54):2647–2662. https://doi.org/10.12988/ams.2017.79273 Kumar N, Susan S (2021) Particle swarm optimization of partitions and fuzzy order for fuzzy time series forecasting of COVID-19. Appl Soft Comput 110:107611. https://doi.org/10.1016/j.asoc.2021.107611 Li H, Zeng B, Wang J, Wu H (2021) Forecasting the number of new coronavirus infections using an improved grey prediction model. Iran J Public Health 50(9):1842–1853. https://doi.org/10.18502/ijph.v50i9.7057 Malavika B, Marimuthu S, Joy M, Nadaraj A, Asirvatham ES, Jeyaseelan L (2020) Forecasting Covid-19 epidemic in India and high incidence states using SIR and logistic growth models. Clin Epidemiol Glob Health 9:26–33. https://doi.org/10.1016/j.cegh.2020.06.006 Marfak A, Achak D, Azizi A, Nejjari C, Aboudi K, Saad E, Hilali A, Marfak IY (2020) The hidden Markov chain modeling of the Covid-19 spreading using Moroccan dataset. Data Brief 32:106067. https://doi.org/10.1016/j.dib.2020.106067 Melin P, Monica JC, Sanchez D, Castillo O (2020a) Analysis of spatial spread relationships of coronavirus (Covid-19) pandemic in the world using self organizing maps. Chaos Solitons Fractals 138:109917. https://doi.org/10.1016/j.chaos.2020.109917 Melin P, Monica JC, Sanchez D, Castillo O (2020b) Multiple ensemble neural network models with fuzzy response aggregation for predicting Covid-19 time series: the case of Mexico. Healthcare 8(2):181. https://doi.org/10.3390/healthcare8020181 Nieszporska S (2022) Grey systems in the management of demand for palliative care services in Poland. Health Econ Rev 12:3. https://doi.org/10.1186/s13561-021-00349-5 Nitesh D, Sharma MK (2020) Fuzzy logic inference system for identification and prevention of coronavirus (Covid-19). Int J Innov Technol Explor Eng 9(6):1575–1580. https://doi.org/10.35940/ijitee.F4642.049620 Overton CE, Stage HB, Ahmad S (2020) Using statistics and mathematical modeling to understand infectious disease outbreaks: Covid-19 as an example. Infect Dis Model 5:409–441. https://doi.org/10.1016/j.idm.2020.06.008 Palash D, Soumendra G (2018) Fuzzy decision making in medical diagnosis using an advanced distance measure on intuitionistic fuzzy sets. Open Cybern Syst J 12:136–149. https://doi.org/10.2174/1874110X01812010136 Roda WC, Varughese MB, Han D, Li MY (2020) Why is it difficult to accurately predict the Covid-19 epidemic? Infect Dis Model 5:271–281. https://doi.org/10.1016/j.idm.2020.03.001 Ruben RC, Olivas JA, Romero FP, Francisco AG, Jesus SG (2016) An application of fuzzy prototypes to the diagnosis and treatment of fuzzy diseases. Int J Intell Syst 32(2):194–210. https://doi.org/10.1002/int.21836 Sahin U, Sahin T (2020) Forecasting the cumulative number of confirmed cases of Covid-19 in Italy, UK and USA using fractional nonlinear grey Bernoulli model. Chaos Solitons Fractals 138:109948. https://doi.org/10.1016/j.chaos.2020.109948 Sha H, Tang S, Rong L (2020) A discrete stochastic model of the Covid-19 outbreak: forecast and control. Math Biosci Eng 17(4):2792–2804. https://doi.org/10.3934/mbe.2020153 Sun T, Wang Y (2020) Modeling Covid-19 epidemic in Heilongjiang province, China. Chaos Solitons Fractals 138:109949. https://doi.org/10.1016/j.chaos.2020.109949 Varela-Santos S, Melin P (2020) A new approach for classifying coronavirus Covid-19 based on its manifestation on chest X-rays using texture features and neural networks. InfSci 545:403–414. https://doi.org/10.1016/j.ins.2020.09.041 Wang Y, Wei F, Sun C, Li Q (2016) The research of improved Grey GM(1,1) model to predict the postprandial glucose in Type-2 diabetes. Biomed Res Int 2016:6837052. https://doi.org/10.1155/2016/6837052 Yang X, Zou J, Kong D, Jiang G (2018) The analysis of GM(1,1) grey model to predict the incidence trend of typhoid and paratyphoid fevers in Wuhan City, China. Medicine 97(34):e11787. https://doi.org/10.1097/MD.0000000000011787 Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X Zadeh LA (1969) Biological application of the theory of fuzzy sets and systems. In: Biocybernetics of the central nervous system, Little Brown, Boston, Mass, pp 199–212 Zeng B, Ma X, Shi J (2020) Modeling method of the grey GM(1,1) model with interval grey action quantity and its application. Complexity 2020:6514236. https://doi.org/10.1155/2020/6514236 Zhao Y, Shou M, Wang Z (2020) Prediction of the number of patients infected with Covid-19 based on rolling grey Verhulst models. Int J Environ Res Public Health 17(12):4582. https://doi.org/10.3390/ijerph17124582 Zhou X, Guo L, Zhang J, Qin S, Zhu Y (2021) Prediction of mine dust concentration based on grey Markov model. Shock Vib 2021:5859249. https://doi.org/10.1155/2021/5859249