Real-time estimation of PM2.5 concentrations at high spatial resolution in Busan by fusing observational data with chemical transport model outputs

Atmospheric Pollution Research - Tập 13 - Trang 101277 - 2022
Eunhwa Jang1, Minkyeong Kim1, Woogon Do1, Geehyeong Park1, Eunchul Yoo1
1Busan Metropolitan City Institute of Health and Environment, 120, Hambakbong-ro, 140beon-gil, Buk-gu, Busan, 46616, Republic of Korea

Tài liệu tham khảo

Austin, 2013, A framework to spatially cluster air pollution monitoring sites in US based on the PM2. 5 composition, Environ. Int., 59, 244, 10.1016/j.envint.2013.06.003 Beckerman, 2013, A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States, Environ. Sci. Technol., 47, 7233, 10.1021/es400039u Berrocal, 2010, A bivariate space-time downscaler under space and time misalignment, Ann. Appl. Stat., 4, 1942, 10.1214/10-AOAS351 Berrocal, 2010, A spatio-temporal downscaler for output from numerical models, J. Agric. Biol. Environ. Stat., 15, 176, 10.1007/s13253-009-0004-z Bouguettaya, 2015, Efficient agglomerative hierarchical clustering, Expert Syst. Appl., 42, 2785, 10.1016/j.eswa.2014.09.054 Bravo, 2012, Comparison of exposure estimation methods for air pollutants: ambient monitoring data and regional air quality simulation, Environ. Res., 116, 1, 10.1016/j.envres.2012.04.008 Brook, 2010, Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association, Circulation, 121, 2331, 10.1161/CIR.0b013e3181dbece1 Cheng, 2021, Evaluation of real-time PM2.5 forecasts with the WRF-CMAQ modeling system and weather-pattern-dependent bias-adjusted PM2.5 forecasts in Taiwan, Atmos. Environ., 244, 117909, 10.1016/j.atmosenv.2020.117909 Cleland, 2020, Estimating wildfire smoke concentrations during the october 2017 California fires through BME space/time data fusion of observed, modeled, and satellite-derived PM2.5, Environ. Sci. Technol., 54, 13439, 10.1021/acs.est.0c03761 Dabek-Zlotorzynska, 2011, Canadian National Air Pollution Surveillance (NAPS) PM2.5 speciation program: Methodology and PM2.5 chemical composition for the years 2003–2008, Atmos. Environ., 45, 673, 10.1016/j.atmosenv.2010.10.024 Di, 2019, An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution, Environ. Int., 130, 104909, 10.1016/j.envint.2019.104909 Di, 2016, Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States, Environ. Sci. Technol., 50, 4712, 10.1021/acs.est.5b06121 Djalalova, 2015, PM2. 5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model, Atmos. Environ., 108, 76, 10.1016/j.atmosenv.2015.02.021 Feng, 2020, Estimating hourly and continuous ground-level PM2.5 concentrations using an ensemble learning algorithm: the ST-stacking model, Atmos. Environ., 223, 117242, 10.1016/j.atmosenv.2019.117242 Friberg, 2016, Method for fusing observational data and chemical transport model simulations to estimate spatiotemporally resolved ambient air pollution, Environ. Sci. Technol., 50, 3695, 10.1021/acs.est.5b05134 Fuentes, 2005, Model evaluation and spatial interpolation by bayesian combination of observations with outputs from numerical models, Biometrics, 61, 36, 10.1111/j.0006-341X.2005.030821.x Gantt, 2020, Incorporation of remote PM2. 5 concentrations into the downscaler model for spatially fused, Air Q. Surf. Atmos., 11, 103 Garcia, 2010, A comparison of statistical techniques for combining modeled and observed concentrations to create high-resolution ozone air quality surfaces, J. Air Waste Manag. Assoc., 60, 586, 10.3155/1047-3289.60.5.586 Gelfand, 2003, Spatial modeling with spatially varying coefficient processes, J. Am. Stat. Assoc., 98, 387, 10.1198/016214503000170 He, 2018, Satellite-based high-resolution PM2. 5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model, Environ. Pollut., 236, 1027, 10.1016/j.envpol.2018.01.053 Helmis, 1999 Hsu, 2019, Implementation of a dynamical NH3 emissions parameterization in CMAQ for improving PM2. 5 simulation in Taiwan, Atmos. Environ., 218, 116923, 10.1016/j.atmosenv.2019.116923 Hu, 2017, Estimating PM2.5 concentrations in the conterminous United States using the random forest approach, Environ. Sci. Technol., 51, 6936, 10.1021/acs.est.7b01210 Hu, 2013, Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression, Environ. Res., 121, 1, 10.1016/j.envres.2012.11.003 Jang, 2017, Spatial and temporal variation of urban air pollutants and their concentrations in relation to meteorological conditions at four sites in Busan, South Korea, Atmos. Pollut. Res., 8, 89, 10.1016/j.apr.2016.07.009 Kassambara, 2017 Lee, 2016, Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003–2011, J. Expo. Sci. Environ. Epidemiol., 26, 377, 10.1038/jes.2015.41 Liang, 2017, Evaluation of a data fusion approach to estimate daily PM2.5 levels in North China, Environ. Res., 158, 54, 10.1016/j.envres.2017.06.001 Lin, 2020, The improvement of spatial-temporal resolution of PM2.5 estimation based on micro-air quality sensors by using data fusion technique, Environ. Int., 134, 105305, 10.1016/j.envint.2019.105305 Lo, 2008, Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model, J. Geophys. Res.: Atmospheres, 113, 10.1029/2007JD009216 Lv, 2016, Improving the accuracy of daily PM2.5 distributions derived from the fusion of ground-level measurements with aerosol optical depth observations, a case study in north China, Environ. Sci. Technol., 50, 4752, 10.1021/acs.est.5b05940 Lv, 2017, Daily estimation of ground-level PM2.5 concentrations at 4km resolution over Beijing-Tianjin-Hebei by fusing MODIS AOD and ground observations, Sci. Total Environ., 580, 235, 10.1016/j.scitotenv.2016.12.049 Lyu, 2019, Fusion method combining ground-level observations with chemical transport model predictions using an ensemble deep learning framework: application in China to estimate spatiotemporally-resolved PM2. 5 exposure fields in 2014–2017, Environ. Sci. Technol., 53, 7306, 10.1021/acs.est.9b01117 McMillan, 2010, Combining numerical model output and particulate data using Bayesian space–time modeling, Environmetrics, 21, 48 McMurry, 2004 Özkaynak, 2013, Air pollution exposure prediction approaches used in air pollution epidemiology studies, J. Expo. Sci. Environ. Epidemiol., 23, 566, 10.1038/jes.2013.15 Piersanti, 2015, Spatial representativeness of air quality monitoring stations: a grid model based approach, Atmos. Pollut. Res., 6, 953, 10.1016/j.apr.2015.04.005 Pope, 2006, Health effects of fine particulate air pollution: lines that connect, J. Air Waste Manag. Assoc., 56, 709, 10.1080/10473289.2006.10464485 Ross, 2009, 61 Shang, 2019, A novel model for hourly PM2. 5 concentration prediction based on CART and EELM, Sci. Total Environ., 651, 3043, 10.1016/j.scitotenv.2018.10.193 Soares, 2018, The use of hierarchical clustering for the design of optimized monitoring networks, Atmos. Chem. Phys., 18, 6543, 10.5194/acp-18-6543-2018 Syrakov, 2016, Simulation of European air quality by WRF–CMAQ models using AQMEII-2 infrastructure, J. Comput. Appl. Math., 293, 232, 10.1016/j.cam.2015.01.032 2020 Wang, 2019, Estimation of PM2.5 concentrations in China using a spatial back propagation neural network, Sci. Rep., 9, 13788, 10.1038/s41598-019-50177-1 Wang, 2018, A bayesian downscaler model to estimate daily PM2.5 levels in the conterminous US, Int. J. Environ. Res. Publ. Health, 15, 1999, 10.3390/ijerph15091999 Wikle, 2005, Combining information across spatial scales, Technometrics, 47, 80, 10.1198/004017004000000572 Wong, 2004, Comparison of spatial interpolation methods for the estimation of air quality data, J. Expo. Sci. Environ. Epidemiol., 14, 404, 10.1038/sj.jea.7500338 World Health Organization, 2003 Xie, 2015, Daily estimation of ground-level PM2. 5 concentrations over Beijing using 3 km resolution MODIS AOD, Environ. Sci. Technol., 49, 12280, 10.1021/acs.est.5b01413 Xue, 2017, Fusing observational, satellite remote sensing and air quality model simulated data to estimate spatiotemporal variations of PM2. 5 exposure in China, Rem. Sens., 9, 221, 10.3390/rs9030221 Yu, 2018, Cross-comparison and evaluation of air pollution field estimation methods, Atmos. Environ., 179, 49, 10.1016/j.atmosenv.2018.01.045 Zheng, 2013, U-air: when urban air quality inference meets big data, 1436