Real-time electrochemical impedance spectroscopy diagnosis of the solid oxide fuel cell for marine power applications

Hironori Nakajima1
1Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

(2008) Marpol Annex VI. International Maritime Organisation, http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Air-Pollution.aspx . Accessed 30 March 2017

(2011) White paper roadmap to a single european transport area—towards a competitive and resource efficient transport system. Official website of the European Union, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0144:FIN:EN:PDF . Accessed 30 March 2017

(2012) Directive 2012/33/EU of the European Parliament and of the Council. Official website of the European Union, http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012L0033&from=EN . Accessed 30 March 2017

(2014) Mitsubishi Hitachi to integrate SOFC with micro gas turbine for Kyushu University demonstration. Fuel Cells Bull 2004(12):1

Aydın Ö, Koshiyama T, Nakajima H, Kitahara T (2015) In-situ diagnosis and assessment of longitudinal current variation by electrode-segmentation method in anode-supported microtubular solid oxide fuel cells. J Power Sources 279:218–223

Aydın Ö, Nakajima H, Kitahara T (2015) Current and temperature distributions in-situ acquired by electrode-segmentation along a microtubular solid oxide fuel cell operating with syngas. J Power Sources 293:1053–1061

Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

Barsoukov E, Macdonald JR (eds) (2005) Impedance spectroscopy: theory, experiment, and applications, 2nd edn. Wiley, New York

de Troya JJ, Álvarez C, Fernández-Garrido C, Carral L (2016) Analysing the possibilities of using fuel cells in ships. Int J Hydrog Energy 41(4):2853–2866

Díaz-de-Baldasano MC, Mateos FJ, Núñez-Rivas LR, Leo TJ (2014) Conceptual design of offshore platform supply vessel based on hybrid diesel generator-fuel cell power plant. Appl Energy 116:91–100

Eguchi K, Kojo H, Takeguchi T, Kikuchi R, Sasaki K (2002) Fuel flexibility in power generation by solid oxide fuel cells. Solid State Ionics 152–153:411–416

Gordan S, McBride BJ (1994), Chemical equilibrium and applications, NASA Glenn Research Center. http://www.grc.nasa.gov/www/CEAWeb/ . Accessed 30 March 2017

Hale J, Greef R (1967) The interpretation of adsorption pseudocapacitance curves as measured by the potential-sweep method-i. Electrochim Acta 12(10):1409–1420

Hemmes K (2004) Fuel cells. In: White R, Conway B, Vayenas C, Gamboa-Adelco M, Hemmes K (eds) Modern aspects of electrochemistry. Kluwer, Norwell, p 37

Kawakami A, Matsuoka S, Watanabe N, Saito T, Ueno A, Ishihara T, Sakai N, Yokokawa H (2006) Development of two types of tubular SOFCs at TOTO. Ceram Eng Sci Proc 27(4)(3)):3–13

Leonide A, Sonn V, Weber A, Ivers-Tiffée E (2008) Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells. J Electrochem Soc 155(1):B36–B41

Liu J, Barnett SA (2003) Operation of anode-supported solid oxide fuel cells on methane and natural gas. Solid State Ion 158(1–2):11–16

Liu R, Kim S, Taniguchi S, Oshima T, Shiratori Y, Ito K, Sasaki K (2011) Influence of water vapor on long-term performance and accelerated degradation of solid oxide fuel cell cathodes. J Power Sources 196 (17):7090–7096

Liu RR, Wang DJ, Leng J (2013) Influence of NaCl on cathode performance of solid oxide fuel cells. Chem Res Chin Univ 29(4):747–750

McConnell VP (2010) Now, voyager? The increasing marine use of fuel cells. Fuel Cells Bull 2010(5):12–17

McIntosh S, Vohs JM, Gorte RJ (2003) Impedance spectroscopy for the characterization of Cu-ceria-YSZ anodes for SOFCs. J Electrochem Soc 150(10):A1305–A1312

Mizusaki J (2014) Model for solid electrolyte gas electrode reaction kinetics; key concepts, basic model construction, extension of models, new experimental techniques for model confirmation, and future prospects. Electrochemistry 82(10):819–829

Morita H, Komoda M, Mugikura Y, Izaki Y, Watanabe T, Masuda Y, Matsuyama T (2002) Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte. J Power Sources 112(2):509–518

Nakajima H, Nohira T, Ito Y, Kjelstrup S, Bedeaux D (2006) The surface adsorption of hydride ions and hydrogen atoms on Zn studied by electrochemical impedance spectroscopy with a non-equilibrium thermodynamic formulation. J Non-Equilib Thermodyn 31(3):231–255

Nakajima H, Konomi T, Kitahara T, Tachibana H (2008) Electrochemical impedance parameters for the diagnosis of a polymer electrolyte fuel cell poisoned by carbon monoxide in reformed hydrogen fuel. J Fuel Cell Sci Technol 5(4):041013–041013

Nakajima H, Kitahara T, Konomi T (2010) Electrochemical impedance spectroscopy analysis of an anode-supported microtubular solid oxide fuel cell. J Electrochem Soc 157(11):B1686–B1692

Nakajima H, Kitahara T, Higashinaka Y, Nagata Y (2015) Effect of electrode mixing conditions on the performance of lithium-ion batteries analyzed by fast fourier transform electrochemical impedance spectroscopy. ECS Trans 64(22):87–95

Osaka T, Naoi K (1982) Application of on-line impedance measurement using fast. fourier transform to electrochemical systems. Bull Chem Soc Jpn 55(1):36–40

Schichlein H, Müller A, Voigts M, Krügel A, Ivers-Tiffée E (2002) Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J Appl Electrochem 32(8):875–882

Sumi H, Yamaguchi T, Hamamoto K, Suzuki T, Fujishiro Y, Matsui T, Eguchi K (2012) AC impedance characteristics for anode-supported microtubular solid oxide fuel cells. Electrochim Acta 67:159–165

Tse LKC, Wilkins S, McGlashan N, Urban B, Martinez-Botas R (2011) Solid oxide fuel cell/gas turbine trigeneration system for marine applications. J Power Sources 196(6):3149–3162

Watanabe N, Ooe T, Akagi Y, Ishihara T (2012) Estimation of heat generation rate in solid oxide fuel cell module from single cell performance and module performance based on impedance analysis. Int J Hydrog Energy 37(10):8562–8571

Watanabe N, Ooe T, Ishihara T (2012) Design of thermal self supported 700 W class, solid oxide fuel cell module using, LSGM thin film micro tubular cells. J Power Sources 199:117– 123

Welaya YMA, Mosleh M, Ammar NR (2013a) Energy analysis of a combined solid oxide fuel cell with a steam turbine power plant for marine applications. J Mar Sci Appl 12(4):473–483

Welaya YMA, Mosleh M, Ammar NR (2013b) Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications. Int J Nav Archit Ocean Eng 5(4):529–545

Yokokawa H, Tu H, Iwanschitz B, Mai A (2008) Fundamental mechanisms limiting solid oxide fuel cell durability. J Power Sources 182(2):400–412

Yoshizumi T, Taniguchi S, Shiratori Y, Sasaki K (2012) Sulfur poisoning of SOFCs: Voltage oscillation and Ni oxidation. J Electrochem Soc 159(11):F693–F701