Phân loại giới tính trong thời gian thực và kiên cố dựa trên nhiều góc nhìn bằng cách sử dụng các đặc trưng dáng đi trong giám sát video

Pattern Analysis and Applications - Tập 23 - Trang 399-413 - 2019
Trung Dung Do1, Van Huan Nguyen2, Hakil Kim1
1Computer Vision Laboratory, Department of Information and Communication Engineering, Inha University, Incheon, Korea
2Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Tóm tắt

Thường thì người ta thấy trong các ứng dụng thực tế có người đi lại theo các hướng ngẫu nhiên, cầm theo đồ vật, hoặc mặc áo khoác nặng. Những yếu tố này là thách thức đối với các phương pháp ứng dụng dựa trên dáng đi, vì chúng thay đổi đáng kể diện mạo của một người. Bài báo này đề xuất một phương pháp mới để phân loại giới tính con người trong thời gian thực bằng cách sử dụng thông tin về dáng đi. Việc sử dụng hình ảnh dáng đi trung bình, thay vì hình ảnh năng lượng dáng đi, cho phép phương pháp này có hiệu quả tính toán và vững chắc trước những thay đổi về góc nhìn. Một mô hình hướng nhìn được tạo ra để tự động xác định góc nhìn trong giai đoạn kiểm tra. Một mô hình tín hiệu khoảng cách được xây dựng để loại bỏ bất kỳ khu vực nào có sự gắn bó (đồ vật mang theo, áo khoác mặc) khỏi hình bóng để giảm thiểu sự can thiệp trong phân loại kết quả. Cuối cùng, giới tính của con người được phân loại bằng cách sử dụng các bộ phân loại phụ thuộc vào nhiều góc nhìn được huấn luyện bằng máy vector hỗ trợ. Kết quả thử nghiệm xác nhận rằng phương pháp được đề xuất đạt được độ chính xác cao 98.8% trên tập dữ liệu CASIA B và vượt trội hơn các phương pháp hiện đại gần đây.

Từ khóa

#giới tính #phân loại giới tính #dáng đi #giám sát video #máy vector hỗ trợ #mô hình hướng nhìn #khu vực không có sự gắn bó

Tài liệu tham khảo

Romero-Garces A, Calderita LV, Martinez-Gomez J et al (2015) Testing a fully autonomous robotic salesman in real scenarios. In: IEEE international conference on autonomous robots systems and competitions, Vilareal, Portugal, p 17 Burkhardt F, Eckert M, Johannsen W et al (2010) A database of age and gender annotated telephone speech. In: LREC, pp 1562–1565 Meinedo H, Trancoso I (2010) Age and gender classification using fusion of acoustic and prosodic features. In: INTERSPEECH, p 2818–2821 Chaudhari S, Kagalkar R (2012) A review of automatic speaker age classification, recognition and identifying speaker emotion using voice signal. Int J Sci Res 3(11):1307–1311 Golomb BA, Lawrence DT, Sejnowski TJ (1990) SEXNET: a neural network identifies sex from human faces. In: NIPS Graf AB, Wichmann FA (2002) Gender classification of human faces. In: Biologically motivated computer vision, Springer, pp 491–500 Ziyi X, Li L, Pengfei S (2008) A hybrid approach to gender classification from face images. In: 19th International conference on pattern recognition, pp 1–4 Hadid A, Pietikinen M (2009) Combining appearance and motion for face and gender recognition from videos. Pattern Recognit 42(11):2818–2827 Khan MNA, Qureshi SA, Riaz N (2013) Gender classification with decision trees. Int J Signal Process Image Process Pattern Recognit 6(1):165–176 Levi G, Hassner T (2015) Age and gender classification using convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 541–547 Mkinen E, Raisamo R (2008) Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Trans Pattern Anal Mach Intell 30(3):541–547 Samek W, Binder A, Lapuschkin S et al (2017) Understanding and comparing deep neural networks for age and gender classification. In: International conference on computer vision workshop, pp 1629–1638 Murray MP, Drought AB, Kory RC (1964) Walking patterns of normal men. J Bone Joint Surg Am 46(2):335–360 Murray MP (1967) Gait as a total pattern of movement: including a bibliography on gait. Am J Phys Med Rehabil 46(1):290–333 Yu S, Tan D, Tan T (2006) Modelling the effect of view angle variation on appearance-based gait recognition. In: Asian conference on computer vision, Springer, pp 807–816 Yu S, Tan D, Tan T (2006) A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International conference on pattern recognition, pp 441–444 Vapnik VN (1998) Statistical learning theory. Wiley, New York Kozlowski LT, Cutting JE (1977) Recognizing the sex of a walker from a dynamic point-light display. Percept Psychophys 21(6):575–580 Barclay CD, Cutting JE, Kozlowski LT (1978) Temporal and spatial factors in gait perception that influence gender recognition. Percept Psychophys 23(2):145–152 Lee L, Grimson WEL (2002) Gait appearance for recognition. In: Biometric Authentication, Springer, pp 143–154 Chew-Yean Y, N MS (2009) Model-based gait recognition. In: Encyclopedia of biometrics, pp 1082–1088 Sudha L, Bhavani R (2012) Gait based gender identification using statistical pattern classifiers. Int J Comput Appl 40(8):30–35 Han J, Bhanu B (2006) Individual recognition using gait energy image. IEEE Trans Pattern Anal Mach Intell 28(2):316–322 Hu M, Wang Y (2009) A new approach for gender classification based on gait analysis. In: Image and graphics, pp 869–874 Yu S, Tan T, Huang K et al (2009) A study on gait-based gender classification. IEEE Trans Image Process 18(8):1905–1910 Zheng S, Zhang J, Huang K et al (2011) Robust view transformation model for gait recognition. In: 18th IEEE international conference on image processing, pp 2037–2076 Lu J, Wang G, Huang TS (2012) Gait-based gender classification in unconstrained environments. In: 21st International conference on pattern recognition, pp 3284–3287 Chen Y, Yang Y, Lee J (2015) Gait based gender classification using Kinect sensor. In: 122nd ASEE annual conference and exposition Chen L, Wang Y, Wang Y (2009) Gender classification based on fusion of weighted multi-view gait component distance. In: IEEE Chinese conference on pattern recognition, pp 1–5 Makihara Y, Mannami H, Yagi Y (2010) Gait analysis of gender and age using a large-scale multi-view gait database. In: Asian conference on computer vision, Springer, pp 440–451 Zhang D, Wang Y (2014) Using multiple views for gait-based gender classification. In: IEEE 26th Chinese control and decision conference, pp 2194–2197 Choudhury SD, Tjahjadi T (2015) Robust view-invariant multiscale gait recognition. Pattern Recognit 48(3):798–811 De Z (2015) Gender recognition based on gait using multi-view fusion. Open Cybern Syst J 9(2015):512–518 De Z (2015) Research on gait-based gender classification via fusion of multiple views. Int J Database Theory Appl 8(5):39–50 Kale A, Chowdhury AKR, Chellappa R (2003) Towards a view invariant gait recognition algorithm. In: Proceedings IEEE conference on advanced video and signal based surveillance, pp 143–150 Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. Cambridge University Press, Cambridge Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Computer vision and pattern recognition, pp 143–150 Zivkovic Z (2004) Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th international conference on pattern recognition, pp 28–31 Yoo J-H, Hwang D, Nixon MS (2005) Gender classification in human gait using support vector machine. In: International conference on advanced concepts for intelligent vision systems, Springer Birch I, Vernon W, Burrow G et al (2014) The effect of frame rate on the ability of experienced gait analysts to identify characteristics of gait from closed circuit television footage. Sci Justice 54(2):159–163 Winter DA (2004) Biomechanics and motor control of human movement, 3rd edn. Wiley, New Jersey Igual L, Lapedriza A, Borrs R (2013) Robust gait-based gender classification using depth cameras. EURASIP J Image Video Process 1(2013):1–11 Wang Y-C, Kao C-W, Chen Y-N et al (2015) Local block-difference pattern for use in gait-based gender classification. J Inf Sci Eng 31(6):1993–2008 Lee L, Grimson WEL (2002) Gait analysis for recognition and classification. In: Proceedings of fifth IEEE international conference on automatic face and gesture recognition, pp 155–162 Huang G, Wang Y (2007) Gender classification based on fusion of multi-view gait sequences. In: Asian conference on computer vision, Springer Li X, Maybank SJ, Yan S et al (2008) Gait components and their application to gender recognition. IEEE Trans Syst Man Cybern Part C Appl Rev 38(2):145–155 Naini FB, Cobourne MT, McDonal F et al (2008) The influence of craniofacial to standing height proportion on perveived attractiveness. Int J Oral Maxillofac Surg 37(10):877–885 Bogin B, Varela-Silva B, Ines M (2010) Leg length, body proportion, and health: a review with a note on beauty. Int J Environ Res Public Health 7(3):1047–1075 Isaac ER, Elias S, Rajagopalan S et al (2018) Multiview gait-based gender classification through pose-based voting. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2018.04.020 Castro FM, Marn-Jimnez MJ, Guil N et al (2017) Automatic learning of gait signatures for people identification. In: International work-conference on artificial neural networks, Springer, pp 257–270