Real frontiers of fake planes
Tóm tắt
In Dubouloz and Mangolte (Fake real planes: exotic affine algebraic models of
$${\mathbb {R}}^{2}$$
,
arXiv:1507.01574
, 2015), we define and partially classify fake real planes, that is, minimal complex surfaces with conjugation whose real locus is diffeomorphic to the euclidean real plane
$$\mathbb {R}^{2}$$
. Classification results are given up to biregular isomorphisms and up to birational diffeomorphisms. In this note, we describe in an elementary way numerous examples of fake real planes and exhibit examples of such planes of every Kodaira dimension
$$\kappa \in \{-\infty ,0,1,2\}$$
which are birationally diffeomorphic to
$$\mathbb {R}^{2}$$
.
Tài liệu tham khảo
Bertin, J.: Pinceaux de droites et automorphismes des surfaces affines. J. Reine Angew. Math. 341, 32–53 (1983)
Blanc, J., Dubouloz, A.: Automorphisms of \(\mathbb{A}^{1}\)-fibered surfaces. Trans. Amer. Math. Soc. 363(11), 5887–5924 (2011)
Borel, A., Haefliger, A.: La classe d’homologie fondamentale d’un espace analytique. Bull. Soc. Math. France 89, 461–513 (1961)
tom Dieck, T., Petrie, T.: Contractible affine surfaces of Kodaira dimension one. Japan J. Math. 16(1), 147–169 (1990)
tom Dieck, T., Petrie, T.: Homology planes and algebraic curves. Osaka J. Math. 30(4), 855–886 (1993)
Dimca, A.: Singularities and Topology of Hypersurfaces. Universitext. Springer, New York (1992)
Dubouloz, A.: Completions of normal affine surfaces with a trivial Makar-Limanov invariant. Michigan Math. J. 52(2), 289–308 (2004)
Dubouloz, A., Mangolte, F.: Fake real planes: exotic affine algebraic models of \({\mathbb{R}}^{2}\) (2015). arXiv:1507.01574
Fujita, T.: On the topology of noncomplete algebraic surfaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29(3), 503–566 (1982)
Gizatullin, M.H.: Quasihomogeneous affine surfaces. Math. USSR-Izv. 5(5), 1057–1081 (1971)
Gurjar, R.V., Miyanishi, M.: Affine surfaces with \(\overline{\kappa }\leqslant 1\). In: Baily, W.L., Shioda, T. (eds.) Algebraic Geometry and Commutative Algebra, I, pp. 99–124. Kinokuniya, Tokyo (1987)
Gurjar, R.V., Pradeep, C.R.: \(\mathbb{Q}\)-homology planes are rational III. Osaka J. Math. 36(2), 259–335 (1999)
Gurjar, R.V., Pradeep, C.R., Shastri, A.R.: On rationality of logarithmic \(\mathbb{Q}\)-homology planes-II. Osaka J. Math. 34(3), 725–743 (1997)
Kambayashi, T.: On the absence of nontrivial separable forms of the affine plane. J. Algebra 35, 449–456 (1975)
Kulikov, Vik.S., Kharlamov, V.M.: On real structures on rigid surfaces. Izv. Math. 66(1), 133–152 (2002)
Mangolte, F.: Real rational surfaces. In: Real Algebraic Geometry. Panoramas et Synthèses (2016, to appear)
Miyanishi, M.: Open Algebraic Surfaces. CRM Monograph Series, vol. 12. American Mathematical Society, Providence (2001)
Miyanishi, M., Sugie, T.: Affine surfaces containing cylinderlike open sets. J. Math. Kyoto Univ. 20(1), 11–42 (1980)
Namba, M.: Geometry of Projective Algebraic Curves. Monographs and Textbooks in Pure and Applied Mathematics, vol. 88. Marcel Dekker, New York (1984)
Ramanujam, C.P.: A topological characterisation of the affine plane as an algebraic variety. Ann. Math. 94(1), 69–88 (1971)
Wakabayashi, I.: On the logarithmic Kodaira dimension of the complement of a curve in \(\mathbb{P}^2\). Proc. Japan Acad. Ser. A Math. Sci. 54(6), 157–162 (1978)
Zaidenberg, M.: Exotic algebraic structures on affine spaces. St. Petersburg Math. J. 11(5), 703–760 (2000)
