Real-Time Predictive Control of Path Following to Stabilize Autonomous Electric Vehicles Under Extreme Drive Conditions

Automotive Innovation - Tập 5 Số 4 - Trang 453-470 - 2022
Guo, Ningyuan1,2, Zhang, Xudong1, Zou, Yuan1
1Beijing Collaborative and Innovative Center for Electric Vehicle and School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
2School of Mechatronic Engineering and Automation, Foshan University, Foshan, China

Tóm tắt

A novel real-time predictive control strategy is proposed for path following (PF) and vehicle stability of autonomous electric vehicles under extreme drive conditions. The investigated vehicle configuration is a distributed drive electric vehicle, which allows to independently control the torques of each in-wheel motor (IWM) for superior stability, but bringing control complexities. The control-oriented model is established by the Magic Formula tire function and the single-track vehicle model. For PF and direct yaw moment control, the nonlinear model predictive control (NMPC) strategy is developed to minimize PF tracking error and stabilize vehicle, outputting front tires’ lateral force and external yaw moment. To mitigate the calculation burdens, the continuation/general minimal residual algorithm is proposed for real-time optimization in NMPC. The relaxation function method is adopted to handle the inequality constraints. To prevent vehicle instability and improve steering capacity, the lateral velocity differential of the vehicle is considered in phase plane analysis, and the novel stable bounds of lateral forces are developed and online applied in the proposed NMPC controller. Additionally, the Lyapunov-based constraint is proposed to guarantee the closed-loop stability for the PF issue, and sufficient conditions regarding recursive feasibility and closed-loop stability are provided analytically. The target lateral force is transformed as front steering angle command by the inversive tire model, and the external yaw moment and total traction torque are distributed as the torque commands of IWMs by optimization. The validations prove the effectiveness of the proposed strategy in improved steering capacity, desirable PF effects, vehicle stabilization, and real-time applicability.

Tài liệu tham khảo

citation_journal_title=Automot. Innov.; citation_title=End-to-end autonomous driving through dueling double deep Q-network; citation_author=B Peng, Q Sun, SE Li, D Kum, Y Yin, J Wei, T Gu; citation_volume=4; citation_issue=3; citation_publication_date=2021; citation_pages=328-337; citation_doi=10.1007/s42154-021-00151-3; citation_id=CR1 citation_journal_title=Automot. Innov.; citation_title=Path-following control of autonomous vehicles considering coupling effects and multi-source system uncertainties; citation_author=Y Liang, Y Li, Y Yu, Z Zhang, L Zheng, Y Ren; citation_volume=4; citation_issue=3; citation_publication_date=2021; citation_pages=284-300; citation_doi=10.1007/s42154-021-00155-z; citation_id=CR2 citation_journal_title=Control Eng. Pract.; citation_title=Extension coordinated control of four wheel independent drive electric vehicles by AFS and DYC; citation_author=W Chen, X Liang, Q Wang, L Zhao, X Wang; citation_volume=101; citation_publication_date=2020; citation_doi=10.1016/j.conengprac.2020.104504; citation_id=CR3 citation_journal_title=IEEE Trans. Control Syst. Technol.; citation_title=Design and evaluation of side slip angle-based vehicle stability control scheme on a virtual test track; citation_author=T Chung, K Yi; citation_volume=14; citation_issue=2; citation_publication_date=2006; citation_pages=224-234; citation_doi=10.1109/TCST.2005.863649; citation_id=CR4 citation_journal_title=Appl. Energy.; citation_title=Energy-efficient control of electric vehicles based on linear quadratic regulator and phase plane analysis; citation_author=Z Han, N Xu, H Chen, Y Huang, B Zhao; citation_volume=213; citation_publication_date=2018; citation_pages=639-657; citation_doi=10.1016/j.apenergy.2017.09.006; citation_id=CR5 citation_journal_title=IEEE Trans. Veh. Technol.; citation_title=Electronic stability control based on motor driving and braking torque distribution for a four in-wheel motor drive electric vehicle; citation_author=L Zhai, T Sun, J Wang; citation_volume=65; citation_issue=6; citation_publication_date=2016; citation_pages=4726-4739; citation_doi=10.1109/TVT.2016.2526663; citation_id=CR6 citation_journal_title=IEEE Trans. Transp. Electrif.; citation_title=A supervisory control strategy of distributed drive electric vehicles for coordinating handling, lateral stability, and energy efficiency; citation_author=N Guo, X Zhang, Y Zou, B Lenzo, G Du, T Zhang; citation_volume=7; citation_issue=4; citation_publication_date=2021; citation_pages=2488-2504; citation_doi=10.1109/TTE.2021.3085849; citation_id=CR7 citation_journal_title=IEEE Trans. Control Syst. Technol.; citation_title=Model predictive control for vehicle stabilization at the limits of handling; citation_author=CE Beal, JC Gerdes; citation_volume=21; citation_issue=4; citation_publication_date=2013; citation_pages=1258-1269; citation_doi=10.1109/TCST.2012.2200826; citation_id=CR8 citation_journal_title=Veh. Syst. Dyn.; citation_title=Predictive lateral control to stabilise highly automated vehicles at tire-road friction limits; citation_author=SE Li, H Chen, R Li, Z Liu, Z Wang, Z Xin; citation_volume=58; citation_issue=5; citation_publication_date=2020; citation_pages=768-786; citation_doi=10.1080/00423114.2020.1717553; citation_id=CR9 citation_journal_title=Veh. Syst. Dyn.; citation_title=Staying within the nullcline boundary for vehicle envelope control using a sliding surface; citation_author=CG Bobier, JC Gerdes; citation_volume=51; citation_issue=2; citation_publication_date=2013; citation_pages=199-217; citation_doi=10.1080/00423114.2012.720377; citation_id=CR10 citation_journal_title=Veh. Syst. Dyn.; citation_title=Path-tracking and lateral stabilisation for autonomous vehicles by using the steering angle envelope; citation_author=Q Cui, R Ding, C Wei, B Zhou; citation_volume=59; citation_issue=11; citation_publication_date=2021; citation_pages=1672-1696; citation_doi=10.1080/00423114.2020.1776344; citation_id=CR11 citation_journal_title=Mech. Syst. Sig. Process.; citation_title=Polytopic LPV approaches for intelligent automotive systems: State of the art and future challenges; citation_author=P Li, A-T Nguyen, H Du, Y Wang, H Zhang; citation_volume=161; citation_publication_date=2021; citation_doi=10.1016/j.ymssp.2021.107931; citation_id=CR12 citation_journal_title=Annu. Rev. Control.; citation_title=Trajectory planning and tracking for autonomous overtaking: State-of-the-art and future prospects; citation_author=S Dixit, S Fallah, U Montanaro, M Dianati, A Stevens, F McCullough, A Mouzakitis; citation_volume=45; citation_publication_date=2018; citation_pages=76-86; citation_doi=10.1016/j.arcontrol.2018.02.001; citation_id=CR13 citation_journal_title=IEEE Trans. Intell. Transp. Syst.; citation_title=An adaptive hierarchical trajectory following control approach of autonomous four-wheel independent drive electric vehicles; citation_author=J Guo, Y Luo, K Li, J Guo, Y Luo, K Li; citation_volume=19; citation_issue=8; citation_publication_date=2018; citation_pages=2482-2492; citation_doi=10.1109/TITS.2017.2749416; citation_id=CR14 citation_journal_title=IEEE Trans. Transp. Electrif.; citation_title=Integral sliding mode-based composite nonlinear feedback control for path following of four-wheel independently actuated autonomous electric vehicles; citation_author=C Hu, R Wang, F Yan; citation_volume=2; citation_issue=2; citation_publication_date=2016; citation_pages=221-230; citation_doi=10.1109/TTE.2016.2537046; citation_id=CR15 citation_journal_title=IEEE Trans. Intell. Transp. Syst.; citation_title=Robust H-infinity path following control for autonomous ground vehicles with delay and data dropout; citation_author=R Wang, H Jing, C Hu, F Yan, N Chen; citation_volume=17; citation_issue=7; citation_publication_date=2016; citation_pages=2042-2050; citation_doi=10.1109/TITS.2015.2498157; citation_id=CR16 citation_journal_title=J. Franklin Inst.; citation_title=Integrated control of in-wheel motor electric vehicles using a triple-step nonlinear method; citation_author=H Zhao, B Gao, B Ren, H Chen; citation_volume=352; citation_issue=2; citation_publication_date=2015; citation_pages=519-540; citation_doi=10.1016/j.jfranklin.2014.03.015; citation_id=CR17 citation_journal_title=Control Eng. Pract.; citation_title=Nested PID steering control for lane keeping in autonomous vehicles; citation_author=R Marino, S Scalzi, M Netto; citation_volume=19; citation_issue=12; citation_publication_date=2011; citation_pages=1459-1467; citation_doi=10.1016/j.conengprac.2011.08.005; citation_id=CR18 citation_journal_title=Mech. Syst. Sig. Process.; citation_title=Path-tracking of autonomous vehicles using a novel adaptive robust exponential-like-sliding-mode fuzzy type-2 neural network controller; citation_author=H Taghavifar, S Rakheja; citation_volume=130; citation_publication_date=2019; citation_pages=41-55; citation_doi=10.1016/j.ymssp.2019.04.060; citation_id=CR19 citation_journal_title=IEEE Trans. Intell. Transp. Syst.; citation_title=Fuzzy static output feedback control for path following of autonomous vehicles with transient performance improvements; citation_author=A-T Nguyen, C Sentouh, H Zhang, J-C Popieul; citation_volume=21; citation_issue=7; citation_publication_date=2019; citation_pages=3069-3079; citation_doi=10.1109/TITS.2019.2924705; citation_id=CR20 citation_journal_title=J. Dyn. Syst. Meas. Contr.; citation_title=Impaired driver assistance control with gain-scheduling composite nonlinear feedback for vehicle trajectory tracking; citation_author=Y Chen, C Hu, J Wang; citation_volume=142; citation_issue=7; citation_publication_date=2020; citation_doi=10.1115/1.4046339; citation_id=CR21 citation_journal_title=IEEE Trans. Intell. Veh.; citation_title=Design and test of speed tracking control for the self-driving lincoln MKZ platform; citation_author=S Xu, H Peng, Z Song, K Chen, Y Tang; citation_volume=5; citation_issue=2; citation_publication_date=2020; citation_pages=324-334; citation_doi=10.1109/TIV.2019.2955908; citation_id=CR22 Hrovat, D., Di Cairano, S., Tseng, H.E., Kolmanovsky, I.V.: The development of model predictive control in automotive industry: A survey. Paper presented at the 2012 IEEE International Conference on Control Applications, Dubrovnik, Croatia, 2012 citation_journal_title=Automot. Innov.; citation_title=Active collision avoidance system design based on model predictive control with varying sampling time; citation_author=W Xue, L Zheng; citation_volume=3; citation_issue=1; citation_publication_date=2020; citation_pages=62-72; citation_doi=10.1007/s42154-019-00084-y; citation_id=CR24 citation_journal_title=IEEE Trans. Control Syst. Technol.; citation_title=Predictive active steering control for autonomous vehicle systems; citation_author=P Falcone, F Borrelli, J Asgari, HE Tseng, D Hrovat; citation_volume=15; citation_issue=3; citation_publication_date=2007; citation_pages=566-580; citation_doi=10.1109/TCST.2007.894653; citation_id=CR25 citation_journal_title=IEEE Trans. Control Syst. Technol.; citation_title=Explicit nonlinear model predictive control for electric vehicle traction control; citation_author=D Tavernini, M Metzler, P Gruber, A Sorniotti; citation_volume=27; citation_issue=4; citation_publication_date=2019; citation_pages=1438-1451; citation_doi=10.1109/TCST.2018.2837097; citation_id=CR26 citation_journal_title=IEEE Trans. Syst. Man Cybern.: Syst.; citation_title=Nonlinear model predictive lateral stability control of active chassis for intelligent vehicles and its FPGA implementation; citation_author=H Guo, F Liu, F Xu, H Chen, D Cao, Y Ji; citation_volume=49; citation_issue=1; citation_publication_date=2019; citation_pages=2-13; citation_doi=10.1109/TSMC.2017.2749337; citation_id=CR27 citation_title=Predictive control with constraints; citation_publication_date=2002; citation_id=CR28; citation_author=JM Maciejowski; citation_publisher=Pearson Education citation_journal_title=IEEE Trans. Veh. Technol.; citation_title=A real-time nonlinear model predictive controller for yaw motion optimization of distributed drive electric vehicles; citation_author=N Guo, B Lenzo, X Zhang, Y Zou, R Zhai, T Zhang; citation_volume=69; citation_issue=5; citation_publication_date=2020; citation_pages=4935-4946; citation_doi=10.1109/TVT.2020.2980169; citation_id=CR29 citation_journal_title=IEEE Trans. Intell. Transp. Syst.; citation_title=Composite nonlinear feedback control for path following of four-wheel independently actuated autonomous ground vehicles; citation_author=C Hu, R Wang, F Yan, M Chadli; citation_volume=17; citation_issue=7; citation_publication_date=2016; citation_pages=2063-2074; citation_doi=10.1109/TITS.2015.2498172; citation_id=CR30 Kosecka, J., Blasi, R., Taylor, C.J., Malik, J.: A comparative study of vision-based lateral control strategies for autonomous highway driving. Paper presented at the 1998 IEEE International Conference on Robotics and Automation, 1998 citation_journal_title=IEEE Trans. Transp. Electrif.; citation_title=A computationally efficient path following control strategy of autonomous electric vehicles with yaw motion stabilization; citation_author=N Guo, X Zhang, Y Zou, B Lenzo, T Zhang; citation_volume=6; citation_issue=2; citation_publication_date=2020; citation_pages=728-739; citation_doi=10.1109/TTE.2020.2993862; citation_id=CR32 citation_title=Tire and vehicle dynamics; citation_publication_date=2012; citation_id=CR33; citation_author=HB Pacejka; citation_publisher=Butterworth-Heinemann citation_journal_title=IEEE Trans. Control Syst. Technol.; citation_title=Collision avoidance and stabilization for autonomous vehicles in emergency scenarios; citation_author=J Funke, M Brown, SM Erlien, JC Gerdes; citation_volume=25; citation_issue=4; citation_publication_date=2016; citation_pages=1204-1216; citation_doi=10.1109/TCST.2016.2599783; citation_id=CR34 citation_journal_title=IEEE Trans. Intell. Transp. Syst.; citation_title=Shared steering control using safe envelopes for obstacle avoidance and vehicle stability; citation_author=SM Erlien, S Fujita, JC Gerdes; citation_volume=17; citation_issue=2; citation_publication_date=2015; citation_pages=441-451; citation_doi=10.1109/TITS.2015.2453404; citation_id=CR35 citation_journal_title=IEEE Trans. Control Syst. Technol.; citation_title=Design and experimental verification of real-time nonlinear predictive controller for improving the stability of production vehicles; citation_author=P Wang, H Liu, L Guo, L Zhang, H Ding, H Chen; citation_volume=29; citation_issue=5; citation_publication_date=2021; citation_pages=2206-2213; citation_doi=10.1109/TCST.2020.3015832; citation_id=CR36 citation_title=Optimal control theory: an introduction; citation_publication_date=2004; citation_id=CR37; citation_author=DE Kirk; citation_publisher=Dover Publications citation_journal_title=Automatica; citation_title=A continuation/GMRES method for fast computation of nonlinear receding horizon control; citation_author=T Ohtsuka; citation_volume=40; citation_issue=4; citation_publication_date=2004; citation_pages=563-574; citation_doi=10.1016/j.automatica.2003.11.005; citation_id=CR38 citation_journal_title=J. Comput. Phys.; citation_title=Jacobian-free Newton-Krylov methods: a survey of approaches and applications; citation_author=DA Knoll, DE Keyes; citation_volume=193; citation_issue=2; citation_publication_date=2004; citation_pages=357-397; citation_doi=10.1016/j.jcp.2003.08.010; citation_id=CR39 citation_journal_title=Energy; citation_title=Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation; citation_author=N Guo, X Zhang, Y Zou, L Guo, G Du; citation_volume=214; citation_publication_date=2021; citation_doi=10.1016/j.energy.2020.119070; citation_id=CR40 citation_journal_title=IEEE Trans. Veh. Technol.; citation_title=Predictive energy management of plug-in hybrid electric vehicles by real-time optimization and data-driven calibration; citation_author=N Guo, X Zhang, Y Zou, G Du, C Wang, L Guo; citation_volume=71; citation_issue=6; citation_publication_date=2022; citation_pages=5677-5691; citation_doi=10.1109/TVT.2021.3138440; citation_id=CR41 citation_journal_title=Control Eng. Pract.; citation_title=A fast model predictive control allocation of distributed drive electric vehicles for tire slip energy saving with stability constraints; citation_author=N Guo, X Zhang, Y Zou, B Lenzo, T Zhang, D Göhlich; citation_volume=102; citation_issue=1; citation_publication_date=2020; citation_doi=10.1016/j.conengprac.2020.104554; citation_id=CR42 citation_journal_title=J. Franklin Inst.; citation_title=Karush–Kuhn–Tuckert based global optimization algorithm design for solving stability torque allocation of distributed drive electric vehicles; citation_author=X Zhang, D Göhlich, W Zheng; citation_volume=354; citation_issue=18; citation_publication_date=2017; citation_pages=8134-8155; citation_doi=10.1016/j.jfranklin.2017.10.005; citation_id=CR43