Real-Time Optimal Synthetic Inversion Recovery Image Selection (RT-OSIRIS) for Deep Brain Stimulation Targeting

Vishal Patel1, Shengzhen Tao1, Xiangzhi Zhou1, Chen Lin1, Erin M. Westerhold1, Sanjeet S. Grewal2, Erik H. Middlebrooks1
1Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
2Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lee DJ, Lozano CS, Dallapiazza RF, Lozano AM. Current and future directions of deep brain stimulation for neurological and psychiatric disorders. J Neurosurg. 2019;131(2):333-342. https://doi.org/10.3171/2019.4.JNS181761

Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol. 2016;115(1):19-38. https://doi.org/10.1152/jn.00281.2015

Richardson RM, Ostrem JL, Starr PA. Surgical repositioning of misplaced subthalamic electrodes in Parkinson’s disease: location of effective and ineffective leads. Stereotact Funct Neurosurg. 2009;87(5):297-303. https://doi.org/10.1159/000230692

Vayssiere N, Hemm S, Cif L, et al. Comparison of atlas- and magnetic resonance imaging-based stereotactic targeting of the globus pallidus internus in the performance of deep brain stimulation for treatment of dystonia. J Neurosurg. 2002;96(4):673-679. https://doi.org/10.3171/jns.2002.96.4.0673

Landi A, Grimaldi M, Antonini A, Parolin M, Zincone A Marina null. MRI indirect stereotactic targeting for deep brain stimulation in Parkinson’s disease. J Neurosurg Sci. 2003;47(1):26–32.

Grewal SS, Middlebrooks EH, Okromelidze L, et al. Variability Between Direct and Indirect Targeting of the Anterior Nucleus of the Thalamus. World Neurosurg. 2020;139:e70-e77. https://doi.org/10.1016/j.wneu.2020.03.107

Melo M, Furlanetti L, Hasegawa H, Mundil N, Ashkan K. Comparison of direct MRI guided versus atlas-based targeting for subthalamic nucleus and globus pallidus deep brain stimulation. Br J Neurosurg. 2023;37(5):1040-1045. https://doi.org/10.1080/02688697.2020.1850641

Rabie A, Verhagen Metman L, Slavin KV. Using “Functional” Target Coordinates of the Subthalamic Nucleus to Assess the Indirect and Direct Methods of the Preoperative Planning: Do the Anatomical and Functional Targets Coincide? Brain Sci. 2016;6(4):65. https://doi.org/10.3390/brainsci6040065

Middlebrooks EH, Domingo RA, Vivas-Buitrago T, et al. Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics. AJNR Am J Neuroradiol. 2020;41(9):1558-1568. https://doi.org/10.3174/ajnr.A6693

Mathiopoulou V, Rijks N, Caan MWA, et al. Utilizing 7-Tesla Subthalamic Nucleus Connectivity in Deep Brain Stimulation for Parkinson Disease. Neuromodulation J Int Neuromodulation Soc. 2023;26(2):333-339. https://doi.org/10.1016/j.neurom.2022.01.003

Patriat R, Cooper SE, Duchin Y, et al. Individualized tractography-based parcellation of the globus pallidus pars interna using 7T MRI in movement disorder patients prior to DBS surgery. NeuroImage. 2018;178:198-209. https://doi.org/10.1016/j.neuroimage.2018.05.048

Sudhyadhom A, Haq IU, Foote KD, Okun MS, Bova FJ. A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). NeuroImage. 2009;47 Suppl 2:T44-52. https://doi.org/10.1016/j.neuroimage.2009.04.018

Tao S, Zhou X, Westerhold EM, Middlebrooks EH, Lin C. Optimization of fast gray matter acquisition T1 inversion recovery (FGATIR) on 7T MRI for deep brain stimulation targeting. NeuroImage. 2022;252:119043. https://doi.org/10.1016/j.neuroimage.2022.119043

Middlebrooks EH, Okromelidze L, Lin C, et al. Edge-enhancing gradient echo with multi-image co-registration and averaging (EDGE-MICRA) for targeting thalamic centromedian and parafascicular nuclei. Neuroradiol J. 2021;34(6):667-675. https://doi.org/10.1177/19714009211021781

Vassal F, Coste J, Derost P, et al. Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence. Brain Stimulat. 2012;5(4):625–633. https://doi.org/10.1016/j.brs.2011.10.007

Tao S, Zhou X, Lin C, Patel V, Westerhold EM, Middlebrooks EH. Optimization of MP2RAGE T1 mapping with radial view-ordering for deep brain stimulation targeting at 7 T MRI. Magn Reson Imaging. 2023;100:55-63. https://doi.org/10.1016/j.mri.2023.03.007

Burkett BJ, Fagan AJ, Felmlee JP, et al. Clinical 7-T MRI for neuroradiology: strengths, weaknesses, and ongoing challenges. Neuroradiology. 2021;63(2):167-177. https://doi.org/10.1007/s00234-020-02629-z

Gonçalves FG, Serai SD, Zuccoli G. Synthetic Brain MRI: Review of Current Concepts and Future Directions. Top Magn Reson Imaging TMRI. 2018;27(6):387-393. https://doi.org/10.1097/RMR.0000000000000189

Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele PF, Gruetter R. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage. 2010;49(2):1271-1281. https://doi.org/10.1016/j.neuroimage.2009.10.002

Middlebrooks EH, Tao S, Zhou X, et al. Synthetic Inversion Image Generation using MP2RAGE T1 Mapping for Surgical Targeting in Deep Brain Stimulation and Lesioning. Stereotact Funct Neurosurg. 2023;101(5):326-331. https://doi.org/10.1159/000533259

Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30(9):1323-1341. https://doi.org/10.1016/j.mri.2012.05.001

Michie D. “Memo” Functions and Machine Learning. Nature. 1968;218(5136):19-22. https://doi.org/10.1038/218019a0

Zhang G, Sanchez D. Leveraging Hardware Caches for Memoization. IEEE Comput Archit Lett. 2018;17(1):59-63. https://doi.org/10.1109/LCA.2017.2762308

Chung KL, Wu ST. Inverse halftoning algorithm using edge-based lookup table approach. IEEE Trans Image Process. 2005;14(10):1583-1589. https://doi.org/10.1109/TIP.2005.854494

Foley J, Kim W. Image Composition via Lookup Table Manipulation. IEEE Comput Graph Appl. 1987;7(11):26-35. https://doi.org/10.1109/MCG.1987.277067

Wilcox C, Strout MM, Bieman JM. Mesa: automatic generation of lookup table optimizations. In: Proceedings of the 4th International Workshop on Multicore Software Engineering. IWMSE ’11. Association for Computing Machinery; 2011:1–8. https://doi.org/10.1145/1984693.1984694

Snyder J, Seres P, Stobbe RW, et al. Inline dual-echo T2 quantification in brain using a fast mapping reconstruction technique. NMR Biomed. 2023;36(1):e4811. https://doi.org/10.1002/nbm.4811