Reactive oxygen species, abiotic stress and stress combination

Plant Journal - Tập 90 Số 5 - Trang 856-867 - 2017
Feroza K. Choudhury1, Rosa M. Rivero2, Eduardo Blumwald3, Ron Mittler1
1Department of Biological Sciences College of Arts and Sciences University of North Texas 1155 Union Circle #305220 Denton TX 76203-5017 USA
2Department of Plant Nutrition CEBAS-CSIC Campus Universitario Espinardo Ed. 25, 30100 Espinardo Murcia Spain
3Department of Plant Sciences Mail Stop 5 University of California 1 Shields Ave Davis CA 95616 USA

Tóm tắt

Summary

Reactive oxygen species (ROS) play a key role in the acclimation process of plants to abiotic stress. They primarily function as signal transduction molecules that regulate different pathways during plant acclimation to stress, but are also toxic byproducts of stress metabolism. Because each subcellular compartment in plants contains its own set of ROS‐producing and ROS‐scavenging pathways, the steady‐state level of ROS, as well as the redox state of each compartment, is different at any given time giving rise to a distinct signature of ROS levels at the different compartments of the cell. Here we review recent studies on the role of ROS in abiotic stress in plants, and propose that different abiotic stresses, such as drought, heat, salinity and high light, result in different ROS signatures that determine the specificity of the acclimation response and help tailor it to the exact stress the plant encounters. We further address the role of ROS in the acclimation of plants to stress combination as well as the role of ROS in mediating rapid systemic signaling during abiotic stress. We conclude that as long as cells maintain high enough energy reserves to detoxify ROS, ROS is beneficial to plants during abiotic stress enabling them to adjust their metabolism and mount a proper acclimation response.

Từ khóa


Tài liệu tham khảo

10.1126/science.1118642

10.1016/j.cub.2009.05.059

10.1104/pp.106.082040

10.4161/psb.22455

10.1021/bi4013534

10.1016/j.tplants.2013.01.007

10.1016/j.jprot.2012.12.003

10.1002/pmic.201400370

10.1104/pp.16.00404

10.1111/plb.12410

10.1073/pnas.1319955111

10.1242/jeb.089938

10.1093/aob/mcv153

10.1146/annurev.physiol.66.032102.150251

10.1105/tpc.104.026971

10.1006/abbi.1998.0694

10.1093/jxb/eru505

10.14348/molcells.2016.2324

10.1104/pp.16.00375

10.1111/j.1742-4658.2008.06264.x

10.1016/S1360-1385(01)01892-1

10.1074/jbc.M110.212928

10.1093/mp/sst009

10.1073/pnas.1005366107

10.1073/pnas.1221294110

10.3389/fpls.2016.00471

10.1089/ars.2008.2177

10.1089/ars.2013.5278

10.1111/pce.12621

10.1093/jxb/erw079

10.1586/14789450.1.3.365

10.1105/tpc.106.043000

10.1105/tpc.110.080325

10.1016/j.coph.2007.06.003

10.1016/j.tplants.2014.06.013

10.1104/pp.16.00434

10.1104/pp.107.115121

10.1038/emboj.2010.181

10.1046/j.1365-313X.2002.029005545.x

10.1093/acprof:oso/9780198717478.001.0001

10.3389/fpls.2015.00420

10.1104/pp.16.00166

Jin R., 2015, Physiological and metabolic changes of Purslane (Portulaca oleracea L.) in response to drought, heat, and combined stresses, Front. Plant Sci., 6, 1123

10.1105/tpc.112.105049

10.1007/s11120-012-9784-z

10.1007/s00299-003-0591-z

10.1016/S0168-9452(02)00213-3

10.1104/pp.16.00359

10.1093/mp/ssp121

10.1016/j.bbabio.2016.03.017

10.1074/jbc.M806337200

10.1073/pnas.97.6.2940

10.1104/pp.15.01589

10.1073/pnas.0702061104

10.1093/jexbot/52.354.1

10.1016/j.chom.2014.02.009

10.1105/tpc.15.00880

10.1021/pr1002609

10.3389/fpls.2016.00838

10.1093/jxb/erw080

10.1126/scisignal.2000448

10.1111/j.1365-3040.2009.02041.x

10.1046/j.1365-313X.1997.12020313.x

10.1016/j.tplants.2005.11.002

Mittler R., 2016, ROS are good!, Trends Plant Sci.

10.1146/annurev-arplant-042809-112116

10.1105/tpc.114.133090

10.1016/j.tplants.2004.08.009

10.1016/j.tplants.2011.03.007

10.1016/j.tibs.2011.11.007

10.1111/pce.12014

10.3389/fpls.2016.00230

10.1104/pp.16.00346

10.1016/j.tplants.2007.01.005

10.1104/pp.111.190140

10.3389/fpls.2015.00723

10.1093/jxb/eri196

10.1105/tpc.108.064964

10.1104/pp.113.221044

10.1016/j.plantsci.2013.10.014

10.1111/j.1744-7909.2007.00599.x

10.1104/pp.112.210773

10.1042/BST0380661

10.1111/pce.12199

10.1104/pp.006858

10.1104/pp.103.033431

10.1104/pp.16.00648

10.1021/tx800026g

10.1016/j.plaphy.2010.08.016

10.1016/S0891-5849(01)00480-4

10.1093/jxb/eri181

10.1016/j.cub.2014.03.034

10.1104/pp.125.4.1591

10.1089/ars.2012.5104

10.1016/S0076-6879(00)19040-8

10.1016/j.molp.2015.04.008

10.1093/jxb/erl164

10.1016/j.febslet.2009.08.033

10.1016/j.pbi.2011.07.014

10.1105/tpc.113.114595

10.1111/nph.12797

10.1371/journal.pone.0147625

10.1104/pp.16.00246

10.1016/j.bbapap.2014.02.015

10.1104/pp.15.01237

10.1105/tpc.109.071316

10.1111/j.1365-3040.2011.02324.x

10.1089/ars.2013.5662

10.1111/j.1742-4658.2008.06335.x

10.1104/pp.105.065896

10.1073/pnas.1217516109

10.1111/j.1365-3040.2011.02445.x

10.1104/pp.111.181024

10.1093/jxb/ers277

10.1007/s11738-014-1711-9

10.1126/science.1103178

10.1111/j.1774-7909.2008.00638.x

10.1038/nrg2348

10.1104/pp.109.138230

10.1093/jxb/erv089

10.1016/j.scienta.2011.03.030

10.1038/nature10427

10.1093/jxb/erw299

10.1093/jxb/eru217