Lớp mỏng hợp kim từ tính được lắng đọng bằng cách phun magnetron có trợ giúp – Tính chất từ tính, điện và giao diện có thể điều chỉnh

Springer Science and Business Media LLC - Tập 22 - Trang 1-12 - 2020
R. K. Ratnesh1, M. Singh2, S. Pathak1, Veerendra Dakulagi3
1Department of Electronics and Communication Engineering, Meerut Institute of Engineering and Technology, Meerut, India
2Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, Surathkal, India
3Department of Electronics and Communication Engineering, Lincoln University College, Kuala Lumpur, 47301, Malaysia

Tóm tắt

Trong công trình này, các lớp mỏng từ tính khác nhau của Ni, NiFe và NiFe2O4 được lắng đọng trên nền SiO2 bằng kỹ thuật phun. Các thí nghiệm của chúng tôi xác nhận rằng các lớp mỏng sở hữu cấu trúc tinh thể nano tốt. Các tham số lắng đọng chính quyết định tính chất từ của chúng là điện trở dây, cấu trúc tinh thể và vi dạng của lớp mỏng được phun. Ngoài ra, khí phản ứng oxy (O2) cũng đóng vai trò chính trong việc biến đổi pha và cấu trúc của lớp phim ferrite. Tính chất nano của lớp phim ferrite dẫn đến việc giảm độ từ tính toàn phần (HC). Độ dày của lớp mỏng được phun nằm trong khoảng 800–1000 Å. Lớp phim đã chuẩn bị thể hiện độ nhám trong khoảng (~ 0,60 đến ~ 0,98 nm). Hơn nữa, nghiên cứu sự biến đổi cấu trúc được thực hiện bằng nhiễu xạ tia X (XRD) và quang phổ hồng ngoại biến đổi Fourier (FTIR). Độ nhám khá thấp, điện trở cao và Hc thấp khiến lớp mỏng NiFe2O4 trở thành ứng cử viên tiềm năng cho các ứng dụng spintronics, quang điện, quang xúc tác và tế bào mặt trời trong tương lai.

Từ khóa

#lớp mỏng #từ tính #phun #NiFe2O4 #cấu trúc nano #spintronics #quang điện

Tài liệu tham khảo

Adireddy S, Lin C, Palshin V, Dong Y, Cole R, Caruntu G (2009) Size-controlled synthesis of quasi-monodisperse transition-metal ferrite nanocrystals in fatty alcohol solutions. J Phys Chem C 113:20800–20811 Amor AB, Budde T, Gatzen HH (2006) A magnetoelastic microtransformer-based microstrain gauge. Sensors Actuators A 129:41–44 Bala T, Sankar CR, Baidakova M, Osipov V, Enoki T, Joy PA, Prasad BLV, Sastry M (2005) Cobalt and magnesium ferrite nanoparticles: preparation using liquid foams as templates and their magnetic characteristics. Langmuir 21:10638–10643 Bao N, Shen L, Wang Y, Padhan P, Gupta A (2007) A facile thermolysis route to monodisperse ferrite nanocrystals. J Am Chem Soc 129:12374–12375 Bharathi KK, Dwevedi S, Venkatesh S, Markandeyulu G (2010) Structural, magnetic, and magnetoelectric properties of NiO.Fe2O3 and NiO.Fe1.925Sm0.075O3 thin films. J Appl Phys 107:09D915 Chen LX, Huang XG, Zhu JH, Li GC, Lan S (2011) Fiber magnetic-field sensor based on nanoparticle magnetic fluid and Fresnel reflection. Opt Lett 36:2761–2763 Chikazumi S (1997) Physics of ferromagnetism. Oxford University Press, New York Chinnasamy C, Malallah Y, Jasinski MM, Daryoush AS (2015) Synthesis of high magnetic moment soft magnetic nanocomposite powders for RF filters and antennas. Appl Surf Sci 334:58–61 Day MPO, Nath P, Curtin WA (2006) Thin film delamination : a discrete dislocation analysis. J Mech Phys Solids 54:2214–2234 Glor EC, Fakhraai Z, Glor EC, Fakhraai Z (2014) Facilitation of interfacial dynamics in entangled polymer films. J Chem Phys 141:194505 Jia X, Chen D, Jiao X, He T, Wang H, Jiang W (2008) Monodispersed co, Ni-ferrite nanoparticles with tunable sizes : controlled cynthesis, magnetic properties and surface modification. J Phys Chem C 112:911–917 Kennedy J, Leveneur J, Turner J, Williams GVM (2014) Applications of nanoparticle-based fluxgate magnetometers for positioning and location. IEEE Proceeding of the Sensors and Applications Symposium, Queenstown, New Zealand, 18–20 February: 0–4 Kim EH, Ahn Y, Lee HS (2007) Biomedical applications of superparamagnetic iron oxide nanoparticles encapsulated within chitosan. J Alloys Compd 434–435:633–636 Machunze R, Janssen GCAM (2009) Stress and strain in titanium nitride thin films. Thin Solid Films 517:5888–5893 Manova E, Kunev B, Paneva D, Mitov I, Petrov L, Estournes C, Orleans CD, Rehspringer JL, Kurmoo M (2004) Properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem Mater 16:5689–5696 Moser A, Takano K, Margulies DT, Albrecht M, Sonobe Y, Ikeda Y, Sun S, Fullerton EE (2002) Magnetic recording: advancing into the future. J Phys D Appl Phys 35:R157–R167 Nowozin T, Beckel A, Bimberg D, Lorke A, Geller M (2014) 3 ns single-shot read-out in a quantum dot-based memory structure. Appl Phys Lett 104:053111 Ogimoto Y, Nakamura M, Takubo N, Tamaru H, Izumi M, Miyano K (2005) Strain-induced crossover of the metal-insulator transition in perovskite manganites. Phys Rev B 71:60403 Pankhurst QA, Connolly J, Jones SK, Doboson D (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181 Prakash T, Williams GVM, Kennedy J, Rubanov S (2016) Formation of magnetic nanoparticles by low energy dual implantation of Ni and Fe into SiO2. J Alloys Compd 667:255–261 Pramanik NC, Fujii T, Nakanishi M, Takada J (2004) Effect of Co2+ ion on the magnetic properties of sol–gel cobalt ferrite thin films. J Mater Chem 14:3328–3332 Ratnesh RK, Mehata MS (2015) Controlled synthesis and optical properties of tunable CdSe quantum dots and effect of pH. AIP Adv 5:097114 Ratnesh RK, Mehata MS (2017) Synthesis and optical properties of core-multi-shell CdSe/CdS/ZnS quantum dots: surface modifications. Opt Mater 64:250–256 Roytburd AL (1998) Thermodynamics of polydomain heterostructures. I Effect of macrostresses. J Appl Phys 83:228–238 Schick D, Herzog M, Wen H, Chen P, Adamo C, Gaal P, Schlom DG, Evans PG, Li Y, Bargheer M (2014) Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO3. Phys Rev Lett 112:097602 Seup Y, Bin S, Kang D (2004) Magnetically separable titania-coated nickel ferrite photocatalyst. Mater Chem Phys 86:375–381 Shemer G, Tirosh E, Livneh T, Markovich G (2007) Tuning a colloidal synthesis to control Co2+ doping in ferrite nanocrystals. J Phys Chem C 111:14334–14338 Shi G, Hanlumyuang Y, Liu Z, Gong Y, Gao W, Li B, Kono J, Lou J, Vajtai R, Sharma P, Ajayan PM (2014) Boron nitride − graphene nanocapacitor and the origins of anomalous size-dependent increase of capacitance. Nano Lett 14:1739–1744 Tang Y, Zhang Y, Du P (2015) Azimuthally controlled magnetic and dielectric properties of multiferroic nanocrystalline composite by magnetic coupling and charge hopping. J Phys Chem C 119:17995–18005 Valencia S, Pena L, Konstantinovic Z, Balcells L, Galceran R (2014) Intrinsic antiferromagnetic/insulating phase at manganite surfaces and interfaces. J Phys Condens Matter 26:166001 Vladimir S, Ingo B, Armin F, Paul H, Frank K, Dirk M, Fred LJ, Stewart CJ, Klaus BD (2007) Nanocrystalline nickel ferrite, NiFe2O4: Mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement and magnetic behavior. J Phys Chem C 111:5026–5033 Williams GVM, Kennedy J, Murmu PP, Rubanov S (2018) Structural and magnetic properties of near surface superparamagnetic Ni1-XFeX nanoparticles in SiO2 formed by low energy dual ion implantation with different fluences. Appl Surf Sci 449:399–404 Xiao B, Ma N, Du P (2013) Percolative NZFO/BTO ceramic composite with magnetism threshold. J Mater Chem C 1:6325–6334 You L, Chen Z, Zou X, Ding H, Chen W, Chen L, Yuan G, Wang J (2012) Characterization and manipulation of mixed phase nanodomains in highly strained BiFeO3 thin films. ACS Nano 6:5388–5394 Zhang F, Saha R, Huang Y, Nix WD, Hwang KC (2007) Indentation of a hard film on a soft substrate: strain gradient hardening effects. Int J Plast 23:25–43 Zhang X, Zhu L, Dong Y, Weng W, Han G, Ma N, Du P (2010) Initial permeability of percolative PbTiO3/NiFe2O4 composite ceramics by a sol – gel in situ process. J Mater Chem 20:10856–10861 Zhao J, Hu J, Tian W, Hu J, Pan M (2015) Designs of novel magnetic flux guides for three-axis magnetic sensors. IEEE Transact Magnet 51:4003406 Zielinski M, Michaud JF, Jiao S, Chassagne T, Bazin AE, Michon A, Portail M, Alquier D (2012) Experimental observation and analytical model of the stress gradient inversion in 3C-SiC layers on silicon. J Appl Phys 111:053507