Reactive adsorption and photodegradation of soman and dimethyl methylphosphonate on TiO2/nanodiamond composites

Applied Catalysis B: Environmental - Tập 259 - Trang 118097 - 2019
Jiří Henych1,2, Štěpán Stehlík3, Karel Mazanec4, Jakub Tolasz1,2, Jan Čermák5, Bohuslav Rezek5, Andreas Mattsson6, Lars Österlund6
1Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
2Faculty of Environment, Králova výšina 7, J.E. Purkyně University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
3Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague 6, Czech Republic
4Military Resarch Institute, Veslařská 230, 637 00 Brno, Czech Republic
5Faculty of Electrical Engineering, Czech Technical University, Technická 2, 166 27 Prague 6, Czech Republic
6Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box 534, SE-751 21 Uppsala, Sweden

Tài liệu tham khảo

Jang, 2015, Update 1 of: destruction and detection of chemical warfare agents, Chem. Rev., 115, PR1, 10.1021/acs.chemrev.5b00402 Roberts, 2013, Recognition and management of pesticide poisonings Friboulet, 1990, Interaction of an organophosphate with a peripheral site on acetylcholinesterase, Biochemistry, 29, 914, 10.1021/bi00456a010 Bajgar, 2004, Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment, Adv. Clin. Chem., 38, 151, 10.1016/S0065-2423(04)38006-6 Robson, 2009, Inhalation exposure of organophosphate pesticides by vegetable growers in the bang-rieng subdistrict in Thailand, J. Environ. Public Health, 2009 Yang, 2014, Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter, Environ. Sci. Technol., 48, 63, 10.1021/es403186z Solbu, 2011, Organophosphates in aircraft cabin and cockpit air - Method development and measurements of contaminants, J. Environ. Monit., 13, 1393, 10.1039/c0em00763c Ekerdt, 1988, Surface chemistry of organophosphorus compounds, J. Phys. Chem., 92, 6182, 10.1021/j100333a005 Galarneau, 1997, Phosphorus removal from wastewaters: experimental and theoretical support for alternative mechanisms, Water Res., 31, 328, 10.1016/S0043-1354(96)00256-4 Etacheri, 2015, Visible-light activation of TiO2 photocatalysts: advances in theory and experiments, J. Photochem. Photobiol. C Photochem. Rev., 1, 10.1016/j.jphotochemrev.2015.08.003 Devi, 2013, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity, Appl. Catal. B Environ., 140–141, 559, 10.1016/j.apcatb.2013.04.035 Low, 2017, Heterojunction photocatalysts, Adv. Mater., 29, 10.1002/adma.201601694 Qiu, 2012, Hybrid Cu xO/TiO 2 nanocomposites as risk-reduction materials in indoor environments, ACS Nano, 6, 1609, 10.1021/nn2045888 Cheng, 2014, Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures, Sci. Rep., 4, 10.1038/srep04181 Xu, 2014, Fabrication of one-dimensional heterostructured TiO2@SnO 2 with enhanced photocatalytic activity, J. Mater. Chem. A, 2, 116, 10.1039/C3TA12863F Liu, 2017, Facet-activity relationship of TiO2 in Fe2O3/TiO2 nanocatalysts for selective catalytic reduction of NO with NH3: in situ DRIFTs and DFT studies, J. Phys. Chem. C, 121, 4970, 10.1021/acs.jpcc.6b11175 Yu, 2017, UV and visible light photocatalytic activity of Au/TiO 2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations, Sci. Rep., 7 Shi, 2016, A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation, J. Memb. Sci., 506, 60, 10.1016/j.memsci.2016.01.053 Yu, 2014, Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution, J. Mater. Chem. A, 2, 3344, 10.1039/c3ta14108j Gao, 2014, Photoinduced superwetting single-walled carbon nanotube/TiO 2 ultrathin network films for ultrafast separation of oil-in-water emulsions, ACS Nano, 8, 6344, 10.1021/nn501851a Jiang, 2018, Bio-derived three-dimensional hierarchical carbon-graphene-TiO2 as electrode for supercapacitors, Sci. Rep., 8 Khalid, 2017, Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review, Ceram. Int., 43, 14552, 10.1016/j.ceramint.2017.08.143 Low, 2018, TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity, J. Catal., 361, 255, 10.1016/j.jcat.2018.03.009 Liu, 2014, Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments, J. Ind. Eng. Chem., 20, 1171, 10.1016/j.jiec.2013.08.028 Tang, 2018, Graphene modified TiO2 composite photocatalysts: mechanism, progress and perspective, Nanomaterials, 8, 105, 10.3390/nano8020105 Gholami, 2013, Synthesis and characterization of spherical silica nanoparticles by modified Stöber process assisted by organic ligand, Superlattices Microstruct., 61, 33, 10.1016/j.spmi.2013.06.004 Esmaeili-Zare, 2012, Simple sonochemical synthesis and characterization of HgSe nanoparticles, Ultrason. Sonochem., 19, 1079, 10.1016/j.ultsonch.2012.01.013 Zinatloo-Ajabshir, 2015, Nanocrystalline Pr6O11: synthesis, characterization, optical and photocatalytic properties, New J. Chem., 39, 3948, 10.1039/C4NJ02106A Mir, 2012, Preparation of ZnO nanoflowers and Zn glycerolate nanoplates using inorganic precursors via a convenient rout and application in dye sensitized solar cells, Chem. Eng. J., 181–182, 779, 10.1016/j.cej.2011.11.085 Goudarzi, 2016, Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods, Sci. Rep., 10.1038/srep32539 Henych, 2018, Chemical warfare agent simulant DMMP reactive adsorption on TiO2/graphene oxide composites prepared via titanium peroxo-complex or urea precipitation, J. Hazard. Mater., 359, 482, 10.1016/j.jhazmat.2018.07.095 Mochalin, 2012, The properties and applications of nanodiamonds, Nat. Nanotechnol., 7, 11, 10.1038/nnano.2011.209 Dolmatov, 2007, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications, Russ. Chem. Rev., 76, 339, 10.1070/RC2007v076n04ABEH003643 Pastrana-Martínez, 2013, Nanodiamond-TiO2 composites for heterogeneous photocatalysis, ChemPlusChem, 78, 801, 10.1002/cplu.201300094 Sampaio, 2015, Nanodiamond TiO2 composites for photocatalytic degradation of microcystin-LA in aqueous solutions under simulated solar light, RSC Adv., 5, 58363, 10.1039/C5RA08812G Pastrana-Martínez, 2018, Photocatalytic activity of functionalized nanodiamond-TiO2 composites towards water pollutants degradation under UV/Vis irradiation, Appl. Surf. Sci., 458, 839, 10.1016/j.apsusc.2018.07.102 Kim, 2011, Photocatalytic decomposition of toluene by nanodiamond-supported TiO 2 prepared using atomic layer deposition, Appl. Catal. A Gen., 408, 148, 10.1016/j.apcata.2011.09.019 Stengl, 2016, Nanostructured metal oxides for stoichiometric degradation of chemical warfare agents, Rev. Environ. Contam. Toxicol., 236, 239 Henych, 2015, Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides, Appl. Surf. Sci., 344, 9, 10.1016/j.apsusc.2015.02.181 Stengl, 2012, Ge4+ doped TiO2 for stoichiometric degradation of warfare agents, J. Hazard. Mater., 227–228, 62, 10.1016/j.jhazmat.2012.05.007 Mattsson, 2009, Photodegradation of DMMP and CEES on zirconium doped titania nanoparticles, Appl. Catal. B-Environ., 92, 401, 10.1016/j.apcatb.2009.08.020 Janoš, 2016, Cerium oxide for the destruction of chemical warfare agents: a comparison of synthetic routes, J. Hazard. Mater., 304, 10.1016/j.jhazmat.2015.10.069 Štengl, 2012, Mesoporous manganese oxide for warfare agents degradation, Microporous Mesoporous Mater., 156, 224, 10.1016/j.micromeso.2012.02.031 Henych, 2019, Solar light decomposition of warfare agent simulant DMMP on TiO2/graphene oxide nanocomposites, Catal. Sci. Technol., 9, 1816, 10.1039/C9CY00059C van der Meulen, 2007, A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase-rutile TiO2 nanoparticles: role of surface intermediates, J. Catal., 251, 131, 10.1016/j.jcat.2007.07.002 Petit, 2017, Unusual water hydrogen bond network around hydrogenated nanodiamonds, J. Phys. Chem. C, 121, 5185, 10.1021/acs.jpcc.7b00721 Yur’ev, 2010, X-ray diffraction study of detonation nanodiamonds, J. Superhard Mater., 32, 311, 10.3103/S1063457610050035 Korepanov, 2017, Carbon structure in nanodiamonds elucidated from Raman spectroscopy, Carbon N. Y., 121, 322, 10.1016/j.carbon.2017.06.012 Petit, 2018, FTIR spectroscopy of nanodiamonds: methods and interpretation, Diam. Relat. Mater., 89, 52, 10.1016/j.diamond.2018.08.005 Sing, 2004, Physisorption hysteresis loops and the characterization of nanoporous materials, Adsorp. Sci. Technol., 22, 773, 10.1260/0263617053499032 Xu, 2005, Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond, J. Solid State Chem., 178, 688, 10.1016/j.jssc.2004.12.025 Zboril, 2012, Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite, J. Hazard. Mater., 211–212, 126, 10.1016/j.jhazmat.2011.10.094 Stengl, 2009, Warfare agents degradation on zirconium doped titania, Microsc. Microanal., 15, 1038, 10.1017/S1431927609097360 Kiselev, 2006, Adsorption and photocatalytic degradation of diisopropyl fluorophosphate and dimethyl methylphosphonate over dry and wet rutile TiO2, J. Photochem. Photobiol. A-Chem., 184, 125, 10.1016/j.jphotochem.2006.04.005 Lin, 2012, In situ IR study of surface hydroxyl species of dehydrated TiO 2: towards understanding pivotal surface processes of TiO 2 photocatalytic oxidation of toluene, Phys. Chem. Chem. Phys., 14, 9468, 10.1039/c2cp40893g Davydov, 2003, The nature of oxide surface centers, 27 Rusu, 2000, Photooxidation of dimethyl methylphosphonate on TiO2 powder, J. Phys. Chem. B, 104, 12299, 10.1021/jp002562a Rusu, 2000, Adsorption and decomposition of dimethyl methylphosphonate on TiO2, J. Phys. Chem. B, 104, 12292, 10.1021/jp002560q Mäkie, 2013, Adsorption of trimethyl phosphate and triethyl phosphate on dry and water pre-covered hematite, maghemite, and goethite nanoparticles, J. Colloid Interface Sci., 392, 349, 10.1016/j.jcis.2012.10.012 Österlund, 2010, Fourier-transform infrared and Raman spectroscopy of pure and doped TiO2 photocatalysts, 189 Rotzinger, 2004, Structure and vibrational Spectrum of formate and acetate adsorbed from aqueous solution onto the TiO2 rutile (110) surface, J. Phys. Chem. B, 108, 5004, 10.1021/jp0360974 Huang, 2013, Enhanced photocatalytic activity of chemically bonded TiO 2 /graphene composites based on the effective interfacial charge transfer through the C-Ti bond, ACS Catal., 3, 1477, 10.1021/cs400080w Schneider, 2014, Understanding TiO 2 photocatalysis: mechanisms and materials, Chem. Rev., 114, 9919, 10.1021/cr5001892 Rezek, 2005, Kelvin force microscopy on diamond surfaces and devices, Diam. Relat. Mater., 466, 10.1016/j.diamond.2005.01.041 Čermák, 2014, Spectrally dependent photovoltages in Schottky photodiode based on (100) B-doped diamond, J. Appl. Phys., 115, 10.1063/1.4864420