Reactive adsorption and photodegradation of soman and dimethyl methylphosphonate on TiO2/nanodiamond composites
Tài liệu tham khảo
Jang, 2015, Update 1 of: destruction and detection of chemical warfare agents, Chem. Rev., 115, PR1, 10.1021/acs.chemrev.5b00402
Roberts, 2013, Recognition and management of pesticide poisonings
Friboulet, 1990, Interaction of an organophosphate with a peripheral site on acetylcholinesterase, Biochemistry, 29, 914, 10.1021/bi00456a010
Bajgar, 2004, Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment, Adv. Clin. Chem., 38, 151, 10.1016/S0065-2423(04)38006-6
Robson, 2009, Inhalation exposure of organophosphate pesticides by vegetable growers in the bang-rieng subdistrict in Thailand, J. Environ. Public Health, 2009
Yang, 2014, Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter, Environ. Sci. Technol., 48, 63, 10.1021/es403186z
Solbu, 2011, Organophosphates in aircraft cabin and cockpit air - Method development and measurements of contaminants, J. Environ. Monit., 13, 1393, 10.1039/c0em00763c
Ekerdt, 1988, Surface chemistry of organophosphorus compounds, J. Phys. Chem., 92, 6182, 10.1021/j100333a005
Galarneau, 1997, Phosphorus removal from wastewaters: experimental and theoretical support for alternative mechanisms, Water Res., 31, 328, 10.1016/S0043-1354(96)00256-4
Etacheri, 2015, Visible-light activation of TiO2 photocatalysts: advances in theory and experiments, J. Photochem. Photobiol. C Photochem. Rev., 1, 10.1016/j.jphotochemrev.2015.08.003
Devi, 2013, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity, Appl. Catal. B Environ., 140–141, 559, 10.1016/j.apcatb.2013.04.035
Low, 2017, Heterojunction photocatalysts, Adv. Mater., 29, 10.1002/adma.201601694
Qiu, 2012, Hybrid Cu xO/TiO 2 nanocomposites as risk-reduction materials in indoor environments, ACS Nano, 6, 1609, 10.1021/nn2045888
Cheng, 2014, Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures, Sci. Rep., 4, 10.1038/srep04181
Xu, 2014, Fabrication of one-dimensional heterostructured TiO2@SnO 2 with enhanced photocatalytic activity, J. Mater. Chem. A, 2, 116, 10.1039/C3TA12863F
Liu, 2017, Facet-activity relationship of TiO2 in Fe2O3/TiO2 nanocatalysts for selective catalytic reduction of NO with NH3: in situ DRIFTs and DFT studies, J. Phys. Chem. C, 121, 4970, 10.1021/acs.jpcc.6b11175
Yu, 2017, UV and visible light photocatalytic activity of Au/TiO 2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations, Sci. Rep., 7
Shi, 2016, A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation, J. Memb. Sci., 506, 60, 10.1016/j.memsci.2016.01.053
Yu, 2014, Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution, J. Mater. Chem. A, 2, 3344, 10.1039/c3ta14108j
Gao, 2014, Photoinduced superwetting single-walled carbon nanotube/TiO 2 ultrathin network films for ultrafast separation of oil-in-water emulsions, ACS Nano, 8, 6344, 10.1021/nn501851a
Jiang, 2018, Bio-derived three-dimensional hierarchical carbon-graphene-TiO2 as electrode for supercapacitors, Sci. Rep., 8
Khalid, 2017, Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review, Ceram. Int., 43, 14552, 10.1016/j.ceramint.2017.08.143
Low, 2018, TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity, J. Catal., 361, 255, 10.1016/j.jcat.2018.03.009
Liu, 2014, Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments, J. Ind. Eng. Chem., 20, 1171, 10.1016/j.jiec.2013.08.028
Tang, 2018, Graphene modified TiO2 composite photocatalysts: mechanism, progress and perspective, Nanomaterials, 8, 105, 10.3390/nano8020105
Gholami, 2013, Synthesis and characterization of spherical silica nanoparticles by modified Stöber process assisted by organic ligand, Superlattices Microstruct., 61, 33, 10.1016/j.spmi.2013.06.004
Esmaeili-Zare, 2012, Simple sonochemical synthesis and characterization of HgSe nanoparticles, Ultrason. Sonochem., 19, 1079, 10.1016/j.ultsonch.2012.01.013
Zinatloo-Ajabshir, 2015, Nanocrystalline Pr6O11: synthesis, characterization, optical and photocatalytic properties, New J. Chem., 39, 3948, 10.1039/C4NJ02106A
Mir, 2012, Preparation of ZnO nanoflowers and Zn glycerolate nanoplates using inorganic precursors via a convenient rout and application in dye sensitized solar cells, Chem. Eng. J., 181–182, 779, 10.1016/j.cej.2011.11.085
Goudarzi, 2016, Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods, Sci. Rep., 10.1038/srep32539
Henych, 2018, Chemical warfare agent simulant DMMP reactive adsorption on TiO2/graphene oxide composites prepared via titanium peroxo-complex or urea precipitation, J. Hazard. Mater., 359, 482, 10.1016/j.jhazmat.2018.07.095
Mochalin, 2012, The properties and applications of nanodiamonds, Nat. Nanotechnol., 7, 11, 10.1038/nnano.2011.209
Dolmatov, 2007, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications, Russ. Chem. Rev., 76, 339, 10.1070/RC2007v076n04ABEH003643
Pastrana-Martínez, 2013, Nanodiamond-TiO2 composites for heterogeneous photocatalysis, ChemPlusChem, 78, 801, 10.1002/cplu.201300094
Sampaio, 2015, Nanodiamond TiO2 composites for photocatalytic degradation of microcystin-LA in aqueous solutions under simulated solar light, RSC Adv., 5, 58363, 10.1039/C5RA08812G
Pastrana-Martínez, 2018, Photocatalytic activity of functionalized nanodiamond-TiO2 composites towards water pollutants degradation under UV/Vis irradiation, Appl. Surf. Sci., 458, 839, 10.1016/j.apsusc.2018.07.102
Kim, 2011, Photocatalytic decomposition of toluene by nanodiamond-supported TiO 2 prepared using atomic layer deposition, Appl. Catal. A Gen., 408, 148, 10.1016/j.apcata.2011.09.019
Stengl, 2016, Nanostructured metal oxides for stoichiometric degradation of chemical warfare agents, Rev. Environ. Contam. Toxicol., 236, 239
Henych, 2015, Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides, Appl. Surf. Sci., 344, 9, 10.1016/j.apsusc.2015.02.181
Stengl, 2012, Ge4+ doped TiO2 for stoichiometric degradation of warfare agents, J. Hazard. Mater., 227–228, 62, 10.1016/j.jhazmat.2012.05.007
Mattsson, 2009, Photodegradation of DMMP and CEES on zirconium doped titania nanoparticles, Appl. Catal. B-Environ., 92, 401, 10.1016/j.apcatb.2009.08.020
Janoš, 2016, Cerium oxide for the destruction of chemical warfare agents: a comparison of synthetic routes, J. Hazard. Mater., 304, 10.1016/j.jhazmat.2015.10.069
Štengl, 2012, Mesoporous manganese oxide for warfare agents degradation, Microporous Mesoporous Mater., 156, 224, 10.1016/j.micromeso.2012.02.031
Henych, 2019, Solar light decomposition of warfare agent simulant DMMP on TiO2/graphene oxide nanocomposites, Catal. Sci. Technol., 9, 1816, 10.1039/C9CY00059C
van der Meulen, 2007, A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase-rutile TiO2 nanoparticles: role of surface intermediates, J. Catal., 251, 131, 10.1016/j.jcat.2007.07.002
Petit, 2017, Unusual water hydrogen bond network around hydrogenated nanodiamonds, J. Phys. Chem. C, 121, 5185, 10.1021/acs.jpcc.7b00721
Yur’ev, 2010, X-ray diffraction study of detonation nanodiamonds, J. Superhard Mater., 32, 311, 10.3103/S1063457610050035
Korepanov, 2017, Carbon structure in nanodiamonds elucidated from Raman spectroscopy, Carbon N. Y., 121, 322, 10.1016/j.carbon.2017.06.012
Petit, 2018, FTIR spectroscopy of nanodiamonds: methods and interpretation, Diam. Relat. Mater., 89, 52, 10.1016/j.diamond.2018.08.005
Sing, 2004, Physisorption hysteresis loops and the characterization of nanoporous materials, Adsorp. Sci. Technol., 22, 773, 10.1260/0263617053499032
Xu, 2005, Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond, J. Solid State Chem., 178, 688, 10.1016/j.jssc.2004.12.025
Zboril, 2012, Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite, J. Hazard. Mater., 211–212, 126, 10.1016/j.jhazmat.2011.10.094
Stengl, 2009, Warfare agents degradation on zirconium doped titania, Microsc. Microanal., 15, 1038, 10.1017/S1431927609097360
Kiselev, 2006, Adsorption and photocatalytic degradation of diisopropyl fluorophosphate and dimethyl methylphosphonate over dry and wet rutile TiO2, J. Photochem. Photobiol. A-Chem., 184, 125, 10.1016/j.jphotochem.2006.04.005
Lin, 2012, In situ IR study of surface hydroxyl species of dehydrated TiO 2: towards understanding pivotal surface processes of TiO 2 photocatalytic oxidation of toluene, Phys. Chem. Chem. Phys., 14, 9468, 10.1039/c2cp40893g
Davydov, 2003, The nature of oxide surface centers, 27
Rusu, 2000, Photooxidation of dimethyl methylphosphonate on TiO2 powder, J. Phys. Chem. B, 104, 12299, 10.1021/jp002562a
Rusu, 2000, Adsorption and decomposition of dimethyl methylphosphonate on TiO2, J. Phys. Chem. B, 104, 12292, 10.1021/jp002560q
Mäkie, 2013, Adsorption of trimethyl phosphate and triethyl phosphate on dry and water pre-covered hematite, maghemite, and goethite nanoparticles, J. Colloid Interface Sci., 392, 349, 10.1016/j.jcis.2012.10.012
Österlund, 2010, Fourier-transform infrared and Raman spectroscopy of pure and doped TiO2 photocatalysts, 189
Rotzinger, 2004, Structure and vibrational Spectrum of formate and acetate adsorbed from aqueous solution onto the TiO2 rutile (110) surface, J. Phys. Chem. B, 108, 5004, 10.1021/jp0360974
Huang, 2013, Enhanced photocatalytic activity of chemically bonded TiO 2 /graphene composites based on the effective interfacial charge transfer through the C-Ti bond, ACS Catal., 3, 1477, 10.1021/cs400080w
Schneider, 2014, Understanding TiO 2 photocatalysis: mechanisms and materials, Chem. Rev., 114, 9919, 10.1021/cr5001892
Rezek, 2005, Kelvin force microscopy on diamond surfaces and devices, Diam. Relat. Mater., 466, 10.1016/j.diamond.2005.01.041
Čermák, 2014, Spectrally dependent photovoltages in Schottky photodiode based on (100) B-doped diamond, J. Appl. Phys., 115, 10.1063/1.4864420
