Reactive Henry problem: effect of calcite dissolution on seawater intrusion

Ezzeddine Laabidi1, Rachida Bouhlila1
1Laboratory of Modeling in Hydraulics and Environment (LMHE), National Engineering School of Tunis (ENIT), University of Tunis El Manar (UTM), Bp 37, Le Belvédère, 1002, Tunis, Tunisia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abarca E, Carrera J, Sánchez-Vila X, Dentz M (2007) Anisotropic dispersive Henry problem. Adv Water Resour 30:913–926. doi: 10.1016/j.advwatres.2006.08.005

Bear J (1979) Hydraulics of groundwater. McGraw-Hill International Book Company, New York, p 569

Bear J (1988) Dynamics of fluids in porous media. Elsevier, New York

Bear J, Kapuler I (1981) A numerical solution for the movement of an interface in a layered coastal aquifer. J Hydrol 50:273–298. doi: 10.1016/0022-1694(81)90074-3

Bouhlila R (1999) Ecoulements, transports et réactions géochimiques couplés dans les milieux poreux. Cas des sels et des saumures: 280. doi: 10.13140/2.1.2270.0808 (in French)

Bouhlila R, Laabidi E (2008) Impacts of calcite dissolution on seawater intrusion processes in coastal aquifers: density dependent flow and multi species reactive transport modelling. IAHS-AISH Publ 320:220–225

Cabral JJSP, Wrobel LC, Montenegro AAA (1992) A case study of saltwater intrusion in a long and thin aquifer. In: Brebbia CA, Ingber MS (eds) Boundary element technology VII. Springer, Netherlands, p 135–149. doi: 10.1007/978-94-011-2872-8_9

Caldeira K, Rau GH (2000) Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: geochemical implications. Geophys Res Lett 27:225–228. doi: 10.1029/1999GL002364

Chilingar GV, Main R, Sinnokrot A (1963) Relationship between porosity, permeability, and surface areas of sediments. J Sediment Res 33

De Marsily G (1981) Quantitative hydrogeology. Ed. Masson, Paris (in French)

Dhatt G, Touzot G (1981) Une présentation de la méthode des éléments finis. Presses de l'Université Laval, Québec, et Maloine, Paris (in French)

Diersch H (1988) Finite element modelling of recirculating density-driven saltwater intrusion processes in groundwater. Adv Water Resour 11:25–43. doi: 10.1016/0309-1708(88)90019-X

Diersch H, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25:899–944

Freedman V, Ibaraki M (2002) Effects of chemical reactions on density-dependent fluid flow: on the numerical formulation and the development of instabilities. Adv Water Resour 25:439–453. doi: 10.1016/S0309-1708(01)00056-2

Fuchtbauer H (1967) Influence of different types of diagenesis on sandstone porosity. In: 7th World Petroleum Congress. World Petroleum Congress

Ghanbari S, Al-Zaabi Y, Pickup GE, Mackay E, Gozalpour F, Todd AC (2006) Simulation of CO2 storage in saline aquifers. Chem Eng Res Des 84:764–775. doi: 10.1205/cherd06007

Guo W, Langevin CD (2002) SEAWAT–User’s Guide to SEAWAT: a computer program for simulation of three-dimensional variable-density ground-water flow. USGS techniques of water-resources investigations, Tallahassee, Florida Open-File Report 01-434:77

Hellevang H, Aagaard P, Oelkers EH, Kvamme B (2005) Can Dawsonite permanently trap CO2? Environ Sci Technol 39:8281–8287. doi: 10.1021/es0504791

Henry HR (1964) Effect of dispersion on salt encroachment in coastal aquifers. US Geol Surv Water-Supply Pap. No. 1613-C:71–84

Kang Q, Lichtner P, Viswanathan H, Abdel-Fattah A (2010) Pore scale modeling of reactive transport involved in geologic CO2 sequestration. Transp Porous Media 82:197–213. doi: 10.1007/s11242-009-9443-9

Laabidi E, Bouhlila R (2015) Nonstationary porosity evolution in mixing zone in coastal carbonate aquifer using an alternative modeling approach. Environ Sci Pollut Res 22:10070–10082. doi: 10.1007/s11356-015-4207-2

Lagneau V, Pipart A, Catalette H (2005) Modélisation couplée chimie-transport du comportement à long terme de la séquestration géologique de CO2 dans des aquifères salins profonds oil and gas science and technology. Rev IFP 60:231–247

Monnin C (1989) An ion interaction model for the volumetric properties of natural waters: density of the solution and partial molar volumes of electrolytes to high concentrations at 25 °C. Geochim Cosmochim Acta 53:1177–1188. doi: 10.1016/0016-7037(89)90055-0

Nasri N, Bouhlila R, Saaltink MW, Gamazo P (2015) Modeling the hydrogeochemical evolution of brine in saline systems: case study of the Sabkha of Oum El Khialate in South East Tunisia. Appl Geochem 55:160–169. doi: 10.1016/j.apgeochem.2014.11.003

Nick HM, Raoof A, Centler F, Thullner M, Regnier P (2013) Reactive dispersive contaminant transport in coastal aquifers: numerical simulation of a reactive Henry problem. J Contam Hydrol 145:90–104. doi: 10.1016/j.jconhyd.2012.12.005

Parkhurst DL, Apello CAJ (1999) User’s Guide to PHREEQC—a computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations. Technical Report 99-4259, US Geological Survey, USA. doi: http://dx.doi.org/10.1016/j.advwatres.2006.08.005

Phillips OM (1991) Geological fluid dynamics: sub-surface flow and reactions. Cambridge University, Cambridge

Pitzer KS, Christopher Peiper J, Busey RH (1984) Thermodynamic properties of aqueous sodium chloride solutions. J Phys Chem Ref Data 13:1–102

Rezaei M, Sanz E, Raeisi E, Ayora C, Vázquez-Suñé E, Carrera J (2005) Reactive transport modeling of calcite dissolution in the fresh–salt water mixing zone. J Hydrol 311:282–298. doi: 10.1016/j.jhydrol.2004.12.017

Romanov D, Dreybrodt W (2006) Evolution of porosity in the saltwater–freshwater mixing zone of coastal carbonate aquifers: an alternative modelling approach. J Hydrol 329:661–673. doi: 10.1016/j.jhydrol.2006.03.030

Saaltink MW, Pifarré FB, Ayora C, Carrera J, Pastallé SO (2004) RETRASO, a code for modeling reactive transport in saturated and unsaturated porous media. Geologica Acta 2:235

Sanford WE, Konikow LF (1989) Simulation of calcite dissolution and porosity changes in saltwater mixing zones in coastal aquifers. Water Resour Res 25:655–667. doi: 10.1029/WR025i004p00655

Segol G, Pinder GF, Gray WG (1975) A Galerkin-finite element technique for calculating the transient position of the saltwater front. Water Resour Res 11:343–347. doi: 10.1029/WR011i002p00343

Shenhav H (1971) Lower Cretaceous sandstone reservoirs, Israel: petrography, porosity, permeability. AAPG Bulletin 55:2194–2224

Simpson MJ, Clement TP (2003) Theoretical analysis of the worthiness of Henry and Elder problems as benchmarks of density-dependent groundwater flow models. Adv Water Resour 26:17–31. doi: 10.1016/S0309-1708(02)00085-4

Tirado M, Clarke R, Jaykus L, McQuatters-Gollop A, Frank J (2010) Climate change and food safety: a review. Food Res Int 43:1745–1765

Voss CI (1984) A finite-element simulation model for saturated-unsaturated fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport. US Geol Surv Water Resour Invest 84–4369:409. doi: 10.1023/A:1006504326005

Voss CI, Souza WR (1987) Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resour Res 23:1851–1866. doi: 10.1029/WR023i010p01851

Yechieli Y, Wood WW (2002) Hydrogeologic processes in saline systems: playas, sabkhas, and saline lakes. Earth Sci Rev 58:343–365. doi: 10.1016/S0012-8252(02)00067-3