Reaching the quantum limit of sensitivity in electron spin resonance

Nature Nanotechnology - Tập 11 Số 3 - Trang 253-257 - 2016
Audrey Bienfait1, J. Jarryd2, Yuimaru Kubo1, Michael Stern1, Xin Zhou1, C. C. Lo2, Christoph Weis3, T. Schenkel3, M. L. W. Thewalt4, D. Vion1, D. Estève1, Brian Julsgaard5, Klaus Mølmer5, John J. L. Morton2, Patrice Bertet1
1Quantronics Group, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette, 91191, France
2London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
3Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
4Department of Physics, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
5Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus C, DK-8000, Denmark

Tóm tắt

Từ khóa


Tài liệu tham khảo

Schweiger, A. & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance (Oxford Univ. Press, 2001).

Yoshimura, T. et al. In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice. Nature Biotechnol. 14, 992–994 (1996).

Garbuio, L. et al. Orthogonal spin labeling and Gd(III)nitroxide distance measurements on bacteriophage t4-lysozyme. J. Phys. Chem. B 117, 3145–3153 (2013).

Sigillito, A. J. et al. Fast, low-power manipulation of spin ensembles in superconducting microresonators. Appl. Phys. Lett. 104, 222407 (2014).

Artzi, Y., Twig, Y. & Blank, A. Induction-detection electron spin resonance with spin sensitivity of a few tens of spins. Appl. Phys. Lett. 106, 084104 (2015).

Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).

Mentink-Vigier, F. et al. Increasing sensitivity of pulse EPR experiments using echo train detection schemes. J. Magn. Reson. 236, 117–125 (2013).

Wrachtrup, J., Von Borczyskowski, C., Bernard, J., Orritt, M. & Brown, R. Optical detection of magnetic resonance in a single molecule. Nature 363, 244–245 (1993).

Grinolds, M. S. et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nature Nanotech. 9, 279–284 (2014).

Hoehne, F. et al. Lock-in detection for pulsed electrically detected magnetic resonance. Rev. Sci. Instrum. 83, 043907 (2012).

Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

Manassen, Y., Hamers, R. J., Demuth, J. E. & Castellano, A. J. Jr . Direct observation of the precession of individual paramagnetic spins on oxidized silicon surfaces. Phys. Rev. Lett. 62, 2531–2534 (1989).

Rugar, D., Yannoni, C. S. & Sidles, J. A. Mechanical detection of magnetic resonance. Nature 360, 563–566 (1992).

Wallace, W. J. & Silsbee, R. H. Microstrip resonators for electron-spin resonance. Rev. Sci. Instrum. 62, 1754–1766 (1991).

Narkowicz, R., Suter, D. & Stonies, R. Planar microresonators for EPR experiments. J. Magn. Reson. 175, 275–284 (2005).

Benningshof, O. W. B., Mohebbi, H. R., Taminiau, I. A. J., Miao, G. X. & Cory, D. G. Superconducting microstrip resonator for pulsed ESR of thin films. J. Magn. Reson. 230, 84–87 (2013).

Bergeal, N. et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010).

Zhou, X. et al. Highgain weakly nonlinear flux-modulated Josephson parametric amplifier using a squid array. Phys. Rev. B 89, 214517 (2014).

Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R. & Lehnert, K. W. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nature Phys. 4, 929–931 (2008).

Vijay, R., Slichter, D. H. & Siddiqi, I. Observation of quantum jumps in a superconducting artificial atom. Phys. Rev. Lett. 106, 110502 (2011).

Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nature Nanotech. 4, 820–823 (2009).

Stehlik, J. et al. Fast charge sensing of a cavity-coupled double quantum dot using a Josephson parametric amplifier. Phys. Rev. Appl. 4, 014018 (2015).

Hatridge, M., Vijay, R., Slichter, D. H., Clarke, J. & Siddiqi, I. Dispersive magnetometry with a quantum limited SQUID parametric amplifier. Phys. Rev. B 83, 134501 (2011).

Feher, G. Electron spin resonance experiments on donors in silicon. i. Electronic structure of donors by the electron nuclear double resonance technique. Phys. Rev. 114, 1219–1244 (1959).

Morley, G. W. et al. The initialization and manipulation of quantum information stored in silicon by bismuth dopants. Nature Mater. 9, 725–729 (2010).

Dreher, L. et al. Electroelastic hyperfine tuning of phosphorus donors in silicon. Phys. Rev. Lett. 106, 037601 (2011).

Wolfowicz, G. et al. Atomic clock transitions in silicon-based spin qubits. Nature Nanotech. 8, 561–564 (2013).

Weis, C. D. et al. Electrical activation and electron spin resonance measurements of implanted bismuth in isotopically enriched silicon-28. Appl. Phys. Lett. 100, 172104 (2012).

Ranjan, V. et al. Probing dynamics of an electron–spin ensemble via a superconducting resonator. Phys. Rev. Lett. 110, 067004 (2013).