Rattling the border wall: Pathophysiological implications of functional and proteomic venom variation between Mexican and US subspecies of the desert rattlesnake Crotalus scutulatus

James Dobson1, Daryl C. Yang2, Bianca op den Brouw1, Chip Cochran3, Tam Huynh2, Sanjaya Kurrupu2, Elda E. Sánchez4, Daniel J. Massey5,6, Kate Baumann1, Timothy N.W. Jackson1,7, Amanda Nouwens8, Peter Josh8, Edgar Neri-Castro9, Alejandro Alagón9, Wayne C. Hodgson2, Bryan G. Fry1
1Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
2Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
3Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA
4National Natural Toxins Research Center (NNTRC), Department of Chemistry, Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
5Arizona Poison and Drug Information Center, 1295 N Martin Room B308, Tucson, AZ 85721, USA
6Banner University Medical Center, 1501 N. Campbell Ave, Tucson, AZ 85745, USA
7Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, Victoria 3000, Australia
8School of Chemistry and Molecular Biology, University of Queensland, St Lucia, QLD 4072, Australia
9Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico

Tài liệu tham khảo

Angulo, 2008, Snake venomics of Central American pitvipers: clues for rationalizing the distinct envenomation profiles of Atropoides nummifer and Atropoides picadoi, J. Proteome Res., 7, 708, 10.1021/pr700610z Armstrong, 1979 Barlow, 2009, Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution, Proc. Biol. Sci., 276, 2443 Benard-Valle, 2015, Antivenom research and development, 61 Borja, 2014, Mojave rattlesnake (Crotalus scutulatus scutulatus) with type B venom from Mexico, Copeia, 1, 7, 10.1643/OT-12-041 Calvete, 2007, Snake venomics of Bitis species reveals large intragenus venom toxin composition variation: application to taxonomy of congeneric taxa, J. Proteome Res., 6, 2732, 10.1021/pr0701714 Calvete, 2010, Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America, J. Proteome Res., 9, 528, 10.1021/pr9008749 Calvete, 2011, Snake population venomics and antivenomics of Bothrops atrox: paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management, J. Proteome, 74, 510, 10.1016/j.jprot.2011.01.003 Campbell, 2004 Cardwell, 2016, Mohave rattlesnake, 1, 563 Castro, 2013, Intraspecies variation in the venom of the rattlesnake Crotalus simus from Mexico: different expression of crotoxin results in highly variable toxicity in the venoms of three subspecies, J. Proteome, 87, 103, 10.1016/j.jprot.2013.05.024 Cantu, 2017, The binding effectiveness of anti-disintegrin polyclonal antibodies against disintegrins and PII and PIII metalloproteases: an immunological survey of type A, B and A+B venoms from Mohave rattlesnakes, Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 191, 168 da Silva, 2001, Prey specificity, comparative lethality and compositional differences of coral snake venoms, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 128, 425 Daltry, 1996, Electrophoretic profiles and biological activities: intraspecific variation in the venom of the Malayan pit viper (Calloselasma rhodostoma), Toxicon, 34, 67, 10.1016/0041-0101(95)00122-0 Daltry, 1996, Diet and snake venom evolution, Nature, 379, 537, 10.1038/379537a0 Dowell, 2016, The deep origin and recent loss of venom toxin genes in rattlesnakes, Curr. Biol., 26, 2434, 10.1016/j.cub.2016.07.038 Forstner, 1997, Geographic variation in whole venom profiles from the mottled rock rattlesnake (Crotalus lepidus lepidus) in Texas, J. Herpetol., 277, 10.2307/1565397 Fry, 2003, Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications, Rapid Commun. Mass Spectrom., 17, 2047, 10.1002/rcm.1148 Fry, 2008, Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia), Mol. Cell. Proteomics, 7, 215, 10.1074/mcp.M700094-MCP200 Gibbs, 2009, Functional basis of a molecular adaptation: prey-specific toxic effects of venom from Sistrurus rattlesnakes, Toxicon, 53, 672, 10.1016/j.toxicon.2009.01.034 Glenn, 1978, Mojave rattlesnake Crotalus scutulatus scutulatus venom: variation in toxicity with geographical origin, Toxicon, 16, 81, 10.1016/0041-0101(78)90065-X Glenn, 1989, Intergradation of two different venom populations of the Mojave rattlesnake (Crotalus scutulatus scutulatus) in Arizona, Toxicon, 27, 411, 10.1016/0041-0101(89)90203-1 Glenn, 1983, Geographical variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) venom properties, Toxicon, 21, 119, 10.1016/0041-0101(83)90055-7 Gopalakrishnakone, 1980, Sites of action of Mojave toxin isolated from the venom of the Mojave rattlesnake, Br. J. Pharmacol., 69, 421, 10.1111/j.1476-5381.1980.tb07031.x Günther, 1885, Reptilia and Batrachia, 7 Heatwole, 1995, Resistances of sympatric and allopatric eels to sea snake venoms, Copeia, 136, 10.2307/1446808 Henderson, 1986, Antigenic relationships between Mojave toxin subunits, Mojave toxin and some crotalid venoms, Toxicon, 24, 473, 10.1016/0041-0101(86)90079-6 Ho, 1981, Presynaptic actions of Mojave toxin isolated from Mojave rattlesnake (Crotalus scutulatus) venom, Toxicon, 19, 889, 10.1016/0041-0101(81)90086-6 Jansa, 2011, Adaptive evolution of the venom-targeted vWF protein in opossums that eat pit vipers, PLoS ONE, 6, 10.1371/journal.pone.0020997 Jayanthi, 1988, Geographical variation in India in the composition and lethal potency of Russell's viper (Vipera russelli) venom, Toxicon, 26, 257, 10.1016/0041-0101(88)90216-4 Kennicott, 1861, On three new forms of rattlesnakes, Proc. Acad. Natl. Sci. Phila., 13, 204 Klauber, 1997, 2 vol. Leopold, 1950, Vegetation zones of Mexico, Ecology, 31, 507, 10.2307/1931569 Li, 2005, Eggs-only diet: its implications for the toxin profile changes and ecology of the marbled sea snake (Aipysurus eydouxii), J. Mol. Evol., 60, 81, 10.1007/s00239-004-0138-0 Mackessy, 2008, Venom composition in rattlesnakes: trends and biological significance, 495 Mackessy, 2010, Evolutionary trends in venom composition in the western rattlesnakes (Crotalus viridis sensu lato): toxicity vs. tenderizers, Toxicon, 55, 1463, 10.1016/j.toxicon.2010.02.028 Massey, 2012, Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from Southern Arizona, J. Proteome, 75, 2576, 10.1016/j.jprot.2012.02.035 Minton, 1986, Geographic and ontogenic variation in venom of the western diamondback rattlesnake (Crotalus atrox), Toxicon, 24, 71, 10.1016/0041-0101(86)90167-4 Mrinalini, 2015, Natural History Notes. Crotalus scutulatus (Mohave Rattlesnake). Maximum size, Herpetol. Rev., 46, 271 Nair, 1976, Temperature stability of phospholipase A activity—II variations in optimum temperature of phospholipases A2 from various snake venoms, Toxicon, 14, 43, 10.1016/0041-0101(76)90118-5 Nair, 1979, Isolation and partial characterization of a phospholipase A2 from the venom of Crotalus scutulatus salvini, Toxicon, 17, 557, 10.1016/0041-0101(79)90230-7 Nair, 1980, Immunological comparison of phospholipases A2 present in rattlesnake (genus Crotalus) venoms, Toxicon, 18, 675, 10.1016/0041-0101(80)90098-7 Núñez, 2009, Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism, J. Proteome, 73, 57, 10.1016/j.jprot.2009.07.013 Pawlak, 2006, Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (mangrove cat snake) with bird-specific activity, J. Biol. Chem., 281, 29030, 10.1074/jbc.M605850200 Poran, 1987, Resistance of California ground squirrels (Spermophilus beecheyi) to the venom of the northern Pacific rattlesnake (Crotalus viridis oreganus): a study of adaptive variation, Toxicon, 25, 767, 10.1016/0041-0101(87)90127-9 Rael, 1993, Hemorrhagic and Mojave toxins in the venoms of the offspring of two Mojave rattlesnakes (Crotalus scutulatus scutulatus), Comp. Biochem. Physiol. B, 106, 595, 10.1016/0305-0491(93)90136-S Rogalski, 2017, Differential procoagulant effects of saw-scaled viper (Serpentes: Viperidae: Echis) snake venoms on human plasma and the narrow taxonomic ranges of antivenom efficacies, Toxicol. Lett., 280, 159, 10.1016/j.toxlet.2017.08.020 Sánchez, 2005, Disintegrin, hemorrhagic, and proteolytic activities of Mohave rattlesnake, Crotalus scutulatus scutulatus venoms lacking Mojave toxin, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 141, 124 Sanz, 2006, Venom proteomes of closely related Sistrurus rattlesnakes with divergent diets, J. Proteome Res., 5, 2098, 10.1021/pr0602500 Saravia, 2002, Geographic and ontogenic variability in the venom of the neotropical rattlesnake Crotalus durissus: pathophysiological and therapeutic implications, Rev. Biol. Trop., 50, 337 Schwartz, 1985, Characterization of two arginine ester hydrolases from Mojave rattlesnake (Crotalus scutulatus scutulatus) venom, Toxicon, 23, 255, 10.1016/0041-0101(85)90148-5 Schwartz, 1984, Mojave rattlesnake (Crotalus scutulatus scutulatus) venom: enzyme activities and purification of arginine ester hydrolases, Toxicon, 22, 327, 10.1016/0041-0101(84)90076-X Straight, 1991, Regional differences in content of small basic peptide toxins in the venoms of Crotalus adamanteus and Crotalus horridus, Comp. Biochem. Physiol. B, 100, 51, 10.1016/0305-0491(91)90083-P Sunagar, 2014, Intraspecific venom variation in the medically significant Southern Pacific rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications, J. Proteome, 99, 68, 10.1016/j.jprot.2014.01.013 Weldon, 2010, Biological and proteomic analysis of venom from the Puerto Rican racer (Alsophis portoricensis: Dipsadidae), Toxicon, 55, 558, 10.1016/j.toxicon.2009.10.010 Wilkinson, 1991, Distribution and genetic variation in venom A and B populations of the Mojave rattlesnake (Crotalus scutulatus scutulatus) in Arizona, Herpetologica, 54 Wooldridge, 2001, Mojave rattlesnakes (Crotalus scutulatus scutulatus) lacking the acidic subunit DNA sequence lack Mojave toxin in their venom, Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 130, 169, 10.1016/S1096-4959(01)00422-5 Zelanis, 2008, Ontogenetic changes in the venom of Bothrops insularis (Serpentes: Viperidae) and its biological implication, South Am. J. Herpetol., 3, 43, 10.2994/1808-9798(2008)3[43:OCITVO]2.0.CO;2 Zepeda, 1985, Isolation of two phospholipases A2 from Mojave rattlesnake (Crotalus scutulatus scutulatus) venom and variation of immunologically related venom proteins in different populations, Comp. Biochem. Physiol. B, 81, 319, 10.1016/0305-0491(85)90320-7