Rattling the border wall: Pathophysiological implications of functional and proteomic venom variation between Mexican and US subspecies of the desert rattlesnake Crotalus scutulatus
Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology - Tập 205 - Trang 62-69 - 2018
Tài liệu tham khảo
Angulo, 2008, Snake venomics of Central American pitvipers: clues for rationalizing the distinct envenomation profiles of Atropoides nummifer and Atropoides picadoi, J. Proteome Res., 7, 708, 10.1021/pr700610z
Armstrong, 1979
Barlow, 2009, Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution, Proc. Biol. Sci., 276, 2443
Benard-Valle, 2015, Antivenom research and development, 61
Borja, 2014, Mojave rattlesnake (Crotalus scutulatus scutulatus) with type B venom from Mexico, Copeia, 1, 7, 10.1643/OT-12-041
Calvete, 2007, Snake venomics of Bitis species reveals large intragenus venom toxin composition variation: application to taxonomy of congeneric taxa, J. Proteome Res., 6, 2732, 10.1021/pr0701714
Calvete, 2010, Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America, J. Proteome Res., 9, 528, 10.1021/pr9008749
Calvete, 2011, Snake population venomics and antivenomics of Bothrops atrox: paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management, J. Proteome, 74, 510, 10.1016/j.jprot.2011.01.003
Campbell, 2004
Cardwell, 2016, Mohave rattlesnake, 1, 563
Castro, 2013, Intraspecies variation in the venom of the rattlesnake Crotalus simus from Mexico: different expression of crotoxin results in highly variable toxicity in the venoms of three subspecies, J. Proteome, 87, 103, 10.1016/j.jprot.2013.05.024
Cantu, 2017, The binding effectiveness of anti-disintegrin polyclonal antibodies against disintegrins and PII and PIII metalloproteases: an immunological survey of type A, B and A+B venoms from Mohave rattlesnakes, Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 191, 168
da Silva, 2001, Prey specificity, comparative lethality and compositional differences of coral snake venoms, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 128, 425
Daltry, 1996, Electrophoretic profiles and biological activities: intraspecific variation in the venom of the Malayan pit viper (Calloselasma rhodostoma), Toxicon, 34, 67, 10.1016/0041-0101(95)00122-0
Daltry, 1996, Diet and snake venom evolution, Nature, 379, 537, 10.1038/379537a0
Dowell, 2016, The deep origin and recent loss of venom toxin genes in rattlesnakes, Curr. Biol., 26, 2434, 10.1016/j.cub.2016.07.038
Forstner, 1997, Geographic variation in whole venom profiles from the mottled rock rattlesnake (Crotalus lepidus lepidus) in Texas, J. Herpetol., 277, 10.2307/1565397
Fry, 2003, Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications, Rapid Commun. Mass Spectrom., 17, 2047, 10.1002/rcm.1148
Fry, 2008, Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia), Mol. Cell. Proteomics, 7, 215, 10.1074/mcp.M700094-MCP200
Gibbs, 2009, Functional basis of a molecular adaptation: prey-specific toxic effects of venom from Sistrurus rattlesnakes, Toxicon, 53, 672, 10.1016/j.toxicon.2009.01.034
Glenn, 1978, Mojave rattlesnake Crotalus scutulatus scutulatus venom: variation in toxicity with geographical origin, Toxicon, 16, 81, 10.1016/0041-0101(78)90065-X
Glenn, 1989, Intergradation of two different venom populations of the Mojave rattlesnake (Crotalus scutulatus scutulatus) in Arizona, Toxicon, 27, 411, 10.1016/0041-0101(89)90203-1
Glenn, 1983, Geographical variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) venom properties, Toxicon, 21, 119, 10.1016/0041-0101(83)90055-7
Gopalakrishnakone, 1980, Sites of action of Mojave toxin isolated from the venom of the Mojave rattlesnake, Br. J. Pharmacol., 69, 421, 10.1111/j.1476-5381.1980.tb07031.x
Günther, 1885, Reptilia and Batrachia, 7
Heatwole, 1995, Resistances of sympatric and allopatric eels to sea snake venoms, Copeia, 136, 10.2307/1446808
Henderson, 1986, Antigenic relationships between Mojave toxin subunits, Mojave toxin and some crotalid venoms, Toxicon, 24, 473, 10.1016/0041-0101(86)90079-6
Ho, 1981, Presynaptic actions of Mojave toxin isolated from Mojave rattlesnake (Crotalus scutulatus) venom, Toxicon, 19, 889, 10.1016/0041-0101(81)90086-6
Jansa, 2011, Adaptive evolution of the venom-targeted vWF protein in opossums that eat pit vipers, PLoS ONE, 6, 10.1371/journal.pone.0020997
Jayanthi, 1988, Geographical variation in India in the composition and lethal potency of Russell's viper (Vipera russelli) venom, Toxicon, 26, 257, 10.1016/0041-0101(88)90216-4
Kennicott, 1861, On three new forms of rattlesnakes, Proc. Acad. Natl. Sci. Phila., 13, 204
Klauber, 1997, 2 vol.
Leopold, 1950, Vegetation zones of Mexico, Ecology, 31, 507, 10.2307/1931569
Li, 2005, Eggs-only diet: its implications for the toxin profile changes and ecology of the marbled sea snake (Aipysurus eydouxii), J. Mol. Evol., 60, 81, 10.1007/s00239-004-0138-0
Mackessy, 2008, Venom composition in rattlesnakes: trends and biological significance, 495
Mackessy, 2010, Evolutionary trends in venom composition in the western rattlesnakes (Crotalus viridis sensu lato): toxicity vs. tenderizers, Toxicon, 55, 1463, 10.1016/j.toxicon.2010.02.028
Massey, 2012, Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from Southern Arizona, J. Proteome, 75, 2576, 10.1016/j.jprot.2012.02.035
Minton, 1986, Geographic and ontogenic variation in venom of the western diamondback rattlesnake (Crotalus atrox), Toxicon, 24, 71, 10.1016/0041-0101(86)90167-4
Mrinalini, 2015, Natural History Notes. Crotalus scutulatus (Mohave Rattlesnake). Maximum size, Herpetol. Rev., 46, 271
Nair, 1976, Temperature stability of phospholipase A activity—II variations in optimum temperature of phospholipases A2 from various snake venoms, Toxicon, 14, 43, 10.1016/0041-0101(76)90118-5
Nair, 1979, Isolation and partial characterization of a phospholipase A2 from the venom of Crotalus scutulatus salvini, Toxicon, 17, 557, 10.1016/0041-0101(79)90230-7
Nair, 1980, Immunological comparison of phospholipases A2 present in rattlesnake (genus Crotalus) venoms, Toxicon, 18, 675, 10.1016/0041-0101(80)90098-7
Núñez, 2009, Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism, J. Proteome, 73, 57, 10.1016/j.jprot.2009.07.013
Pawlak, 2006, Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (mangrove cat snake) with bird-specific activity, J. Biol. Chem., 281, 29030, 10.1074/jbc.M605850200
Poran, 1987, Resistance of California ground squirrels (Spermophilus beecheyi) to the venom of the northern Pacific rattlesnake (Crotalus viridis oreganus): a study of adaptive variation, Toxicon, 25, 767, 10.1016/0041-0101(87)90127-9
Rael, 1993, Hemorrhagic and Mojave toxins in the venoms of the offspring of two Mojave rattlesnakes (Crotalus scutulatus scutulatus), Comp. Biochem. Physiol. B, 106, 595, 10.1016/0305-0491(93)90136-S
Rogalski, 2017, Differential procoagulant effects of saw-scaled viper (Serpentes: Viperidae: Echis) snake venoms on human plasma and the narrow taxonomic ranges of antivenom efficacies, Toxicol. Lett., 280, 159, 10.1016/j.toxlet.2017.08.020
Sánchez, 2005, Disintegrin, hemorrhagic, and proteolytic activities of Mohave rattlesnake, Crotalus scutulatus scutulatus venoms lacking Mojave toxin, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 141, 124
Sanz, 2006, Venom proteomes of closely related Sistrurus rattlesnakes with divergent diets, J. Proteome Res., 5, 2098, 10.1021/pr0602500
Saravia, 2002, Geographic and ontogenic variability in the venom of the neotropical rattlesnake Crotalus durissus: pathophysiological and therapeutic implications, Rev. Biol. Trop., 50, 337
Schwartz, 1985, Characterization of two arginine ester hydrolases from Mojave rattlesnake (Crotalus scutulatus scutulatus) venom, Toxicon, 23, 255, 10.1016/0041-0101(85)90148-5
Schwartz, 1984, Mojave rattlesnake (Crotalus scutulatus scutulatus) venom: enzyme activities and purification of arginine ester hydrolases, Toxicon, 22, 327, 10.1016/0041-0101(84)90076-X
Straight, 1991, Regional differences in content of small basic peptide toxins in the venoms of Crotalus adamanteus and Crotalus horridus, Comp. Biochem. Physiol. B, 100, 51, 10.1016/0305-0491(91)90083-P
Sunagar, 2014, Intraspecific venom variation in the medically significant Southern Pacific rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications, J. Proteome, 99, 68, 10.1016/j.jprot.2014.01.013
Weldon, 2010, Biological and proteomic analysis of venom from the Puerto Rican racer (Alsophis portoricensis: Dipsadidae), Toxicon, 55, 558, 10.1016/j.toxicon.2009.10.010
Wilkinson, 1991, Distribution and genetic variation in venom A and B populations of the Mojave rattlesnake (Crotalus scutulatus scutulatus) in Arizona, Herpetologica, 54
Wooldridge, 2001, Mojave rattlesnakes (Crotalus scutulatus scutulatus) lacking the acidic subunit DNA sequence lack Mojave toxin in their venom, Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 130, 169, 10.1016/S1096-4959(01)00422-5
Zelanis, 2008, Ontogenetic changes in the venom of Bothrops insularis (Serpentes: Viperidae) and its biological implication, South Am. J. Herpetol., 3, 43, 10.2994/1808-9798(2008)3[43:OCITVO]2.0.CO;2
Zepeda, 1985, Isolation of two phospholipases A2 from Mojave rattlesnake (Crotalus scutulatus scutulatus) venom and variation of immunologically related venom proteins in different populations, Comp. Biochem. Physiol. B, 81, 319, 10.1016/0305-0491(85)90320-7