Rationalization of passivation strategies toward high-performance perovskite solar cells

Chemical Society Reviews - Tập 52 Số 1 - Trang 163-195
Zhihao Zhang1,2, Lu Qiao3, Ke Meng4, Run Long3, Gang Chen4, Peng Gao1,2
1CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
2Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
3College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, China
4School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China

Tóm tắt

This review systematically outlines chemical, physical, energetic and field-effect passivation for perovskite solar cells with their corresponding advanced characterization techniques.

Từ khóa


Tài liệu tham khảo

Zhang, 2020, Adv. Funct. Mater., 30, 2001904, 10.1002/adfm.202001904

Wang, 2019, Adv. Funct. Mater., 29, 1808801, 10.1002/adfm.201808801

Jiang, 2021, J. Am. Chem. Soc., 143, 10970, 10.1021/jacs.1c03032

Tong, 2022, Nat. Energy, 7, 642, 10.1038/s41560-022-01046-1

Li, 2022, Nat. Energy, 7, 708, 10.1038/s41560-022-01045-2

Lin, 2022, Nature, 603, 73, 10.1038/s41586-021-04372-8

Zhang, 2020, Adv. Energy Mater., 10, 1902579, 10.1002/aenm.201902579

Li, 2021, Adv. Funct. Mater., 31, 2008621, 10.1002/adfm.202008621

Dunfield, 2020, Adv. Energy Mater., 10, 1904054, 10.1002/aenm.201904054

Ni, 2020, Science, 367, 1352, 10.1126/science.aba0893

Chen, 2019, Chem. Soc. Rev., 48, 3842, 10.1039/C8CS00853A

Yin, 2014, Appl. Phys. Lett., 104, 063903, 10.1063/1.4864778

Long, 2016, J. Am. Chem. Soc., 138, 3884, 10.1021/jacs.6b00645

Zheng, 2017, Nat. Energy, 2, 1

Li, 2017, Energy Environ. Sci., 10, 1234, 10.1039/C7EE00358G

Aristidou, 2017, Nat. Commun., 8, 1, 10.1038/ncomms15218

Zhao, 2018, Mater. Today Energy, 7, 267, 10.1016/j.mtener.2018.01.004

Zhang, 2019, Adv. Energy Mater., 9, 1803573, 10.1002/aenm.201803573

Xue, 2020, Nat. Commun., 11, 1514, 10.1038/s41467-020-15338-1

Chen, 2020, Joule, 4, 1961, 10.1016/j.joule.2020.07.006

Kong, 2020, Sol. RRL, 4, 2000189, 10.1002/solr.202000189

He, 2021, J. Phys. Chem. Lett., 12, 1664, 10.1021/acs.jpclett.0c03851

Zhang, 2021, Adv. Mater., 33, 2008405, 10.1002/adma.202008405

Aristidou, 2015, Angew. Chem., 127, 8326, 10.1002/ange.201503153

Wang, 2021, Adv. Funct. Mater., 31, 2008052, 10.1002/adfm.202008052

Kim, 2019, Sol. RRL, 3, 1800302, 10.1002/solr.201800302

Akin, 2020, Adv. Energy Mater., 10, 1903090, 10.1002/aenm.201903090

Abate, 2014, Nano Lett., 14, 3247, 10.1021/nl500627x

Metrangolo, 2022, Angew. Chem., Int. Ed., 61, e202114793, 10.1002/anie.202114793

Ruiz-Preciado, 2020, J. Am. Chem. Soc., 142, 1645, 10.1021/jacs.9b13701

Ma, 2020, ACS Energy Lett., 5, 3268, 10.1021/acsenergylett.0c01848

Choi, 2020, Nano Energy, 71, 104639, 10.1016/j.nanoen.2020.104639

Yoo, 2021, Nature, 590, 587, 10.1038/s41586-021-03285-w

Ren, 2020, Joule, 4, 1263, 10.1016/j.joule.2020.04.013

Zhang, 2019, Adv. Mater., 31, 1805702, 10.1002/adma.201805702

Haddon, 1993, New Ser., 261, 1545

Shao, 2014, Nat. Commun., 5, 5784, 10.1038/ncomms6784

Xu, 2015, Nat. Commun., 6, 7081, 10.1038/ncomms8081

Yang, 2020, Adv. Funct. Mater., 30, 1910710, 10.1002/adfm.201910710

Luo, 2020, Nano Energy, 70, 104509, 10.1016/j.nanoen.2020.104509

Lin, 2017, Adv. Mater., 29, 1604545, 10.1002/adma.201604545

Wang, 2019, Science, 366, 1509, 10.1126/science.aay9698

Noel, 2014, ACS Nano, 8, 9815, 10.1021/nn5036476

He, 2021, Nano Energy, 79, 105491, 10.1016/j.nanoen.2020.105491

Liu, 2018, J. Phys. Chem. Lett., 9, 1164, 10.1021/acs.jpclett.8b00177

Mai, 2021, Adv. Funct. Mater., 31, 2007762, 10.1002/adfm.202007762

Qiao, 2021, J. Am. Chem. Soc., 143, 9982, 10.1021/jacs.1c04442

Lee, 2017, Chem, 3, 290, 10.1016/j.chempr.2017.05.020

Deng, 2021, Sustainable Energy Fuels, 5, 2347, 10.1039/D1SE00188D

Liang, 2022, Electrochim. Acta, 413, 140172, 10.1016/j.electacta.2022.140172

Wang, 2022, Joule, 6, 1032, 10.1016/j.joule.2022.04.002

Zhang, 2018, Energy Environ. Sci., 11, 3480, 10.1039/C8EE02252F

Guo, 2022, Adv. Energy Mater., 12, 2200537, 10.1002/aenm.202200537

Li, 2020, Adv. Mater., 32, 1907396, 10.1002/adma.201907396

Sen, 2020, J. Am. Chem. Soc., 142, 19980, 10.1021/jacs.0c08592

Zhang, 2021, Nat. Commun., 12, 3383, 10.1038/s41467-021-23566-2

Zhang, 2021, Science, 375, 71, 10.1126/science.abj2637

Zhang, 2020, Energy Environ. Sci., 13, 1154, 10.1039/C9EE03757H

Mcgott, 2021, Joule, 5, 1057, 10.1016/j.joule.2021.03.015

Gao, 2020, Mater. Chem. Front., 4, 3400, 10.1039/D0QM00233J

Milić, 2021, J. Mater. Chem. C, 9, 11428, 10.1039/D1TC01533H

Gao, 2020, Adv. Energy Mater., 10, 1902650, 10.1002/aenm.201902650

Gao, 2018, Nat. Commun., 9, 5028, 10.1038/s41467-018-07382-9

Tavakoli, 2018, Energy Environ. Sci., 11, 3310, 10.1039/C8EE02404A

Alharbi, 2019, Nat. Commun., 10, 3008, 10.1038/s41467-019-10985-5

Wang, 2017, Nat. Energy, 2, 1

Liang, 2020, Adv. Energy Mater., 10, 2000197, 10.1002/aenm.202000197

Hu, 2016, ACS Nano, 10, 5999, 10.1021/acsnano.6b01535

Jung, 2018, Energy Environ. Sci., 11, 2188, 10.1039/C8EE00995C

Yoo, 2019, Energy Environ. Sci., 12, 2192, 10.1039/C9EE00751B

Zhang, 2017, Adv. Mater., 29, 1702157, 10.1002/adma.201702157

Yang, 2019, J. Am. Chem. Soc., 141, 5781, 10.1021/jacs.8b13091

Qiao, 2022, J. Phys. Chem. Lett., 13, 954, 10.1021/acs.jpclett.1c04038

Jiang, 2019, Nat. Photonics, 13, 460, 10.1038/s41566-019-0398-2

Li, 2019, Nat. Energy, 4, 408, 10.1038/s41560-019-0382-6

Zhou, 2019, Adv. Energy Mater., 9, 1

Zhou, 2020, Sol. RRL, 4, 2000107, 10.1002/solr.202000107

Wang, 2022, J. Energy Chem., 64, 179, 10.1016/j.jechem.2021.04.063

Shen, 2018, Energy Environ. Sci., 11, 394, 10.1039/C7EE02627G

Wang, 2019, Science, 363, 265, 10.1126/science.aau5701

Bi, 2017, ACS Energy Lett., 2, 1400, 10.1021/acsenergylett.7b00356

Abdi-Jalebi, 2018, Nature, 555, 497, 10.1038/nature25989

Son, 2018, J. Am. Chem. Soc., 140, 1358, 10.1021/jacs.7b10430

Zheng, 2019, Adv. Energy Mater., 9, 1

Abdi-jalebi, 2018, ACS Nano, 12, 7301, 10.1021/acsnano.8b03586

Shai, 2017, Nano Energy, 36, 213, 10.1016/j.nanoen.2017.04.047

Subhani, 2019, Nano Energy, 61, 165, 10.1016/j.nanoen.2019.04.066

Xiang, 2019, Joule, 3, 205, 10.1016/j.joule.2018.10.008

Ji, 2021, ACS Appl. Energy Mater., 4, 11144, 10.1021/acsaem.1c02048

Gong, 2018, Adv. Funct. Mater., 28, 1804286, 10.1002/adfm.201804286

Mosconi, 2013, J. Phys. Chem. C, 117, 13902, 10.1021/jp4048659

Dar, 2016, Sci. Adv., 2, e1601156, 10.1126/sciadv.1601156

Abdi-Jalebi, 2018, ACS Energy Lett., 3, 2671, 10.1021/acsenergylett.8b01504

Qiao, 2020, Angew. Chem., Int. Ed., 59, 4684, 10.1002/anie.201911615

Zhang, 2022, Small, 2107556, 10.1002/smll.202107556

Wang, 2016, Energy Environ. Sci., 9, 2892, 10.1039/C6EE01969B

Zheng, 2016, ACS Energy Lett., 1, 1014, 10.1021/acsenergylett.6b00457

Faghihnasiri, 2020, Phys. B, 582, 412024, 10.1016/j.physb.2020.412024

Jiao, 2021, Adv. Funct. Mater., 31, 2006243, 10.1002/adfm.202006243

Boopathi, 2021, ACS Energy Lett., 5, 642, 10.1021/acsenergylett.9b02810

Kong, 2016, Proc. Natl. Acad. Sci. U. S. A., 113, 8910, 10.1073/pnas.1609030113

Zhu, 2019, Nat. Commun., 10, 815, 10.1038/s41467-019-08507-4

Faming Li, 2016, Chem. Commun., 52, 5394, 10.1039/C6CC00753H

You, 2020, Energy Environ. Sci., 13, 1187, 10.1039/C9EE02324K

Chen, 2020, Joule, 4, 2661, 10.1016/j.joule.2020.10.014

He, 2020, J. Am. Chem. Soc., 142, 14664, 10.1021/jacs.0c06769

Wang, 2017, Angew. Chem., Int. Ed., 56, 1190, 10.1002/anie.201603694

Wei, 2021, Adv. Energy Mater., 11, 2002326, 10.1002/aenm.202002326

Gao, 2021, Angew. Chem., Int. Ed., 60, 8303, 10.1002/anie.202017148

Bryant, 2016, Energy Environ. Sci., 9, 1655, 10.1039/C6EE00409A

Bu, 2019, Sol. RRL, 3, 1800282, 10.1002/solr.201800282

Lin, 2019, J. Mater. Chem. A, 7, 3006, 10.1039/C8TA11985F

Saidaminov, 2018, Nat. Energy, 3, 648, 10.1038/s41560-018-0192-2

He, 2019, J. Am. Chem. Soc., 141, 5798, 10.1021/jacs.8b13392

Qiao, 2022, J. Am. Chem. Soc., 144, 5543, 10.1021/jacs.2c00319

Zhou, 2022, Adv. Energy Mater., 12, 2201243, 10.1002/aenm.202201243

He, 2011, Adv. Mater., 23, 4636, 10.1002/adma.201103006

Wang, 2021, Adv. Funct. Mater., 31, 2008052, 10.1002/adfm.202008052

Tan, 2022, Nature, 605, 268, 10.1038/s41586-022-04604-5

Aydin, 2019, Adv. Mater., 31, 1900428, 10.1002/adma.201900428

Zardetto, 2017, Sustainable Energy Fuels, 1, 30, 10.1039/C6SE00076B

Koushik, 2017, Energy Environ. Sci., 10, 91, 10.1039/C6EE02687G

Dong, 2015, J. Mater. Chem. A, 3, 5360, 10.1039/C4TA06128D

Song, 2016, J. Mater. Chem. A, 4, 6091, 10.1039/C6TA00577B

Wang, 2021, Nano Res., 14, 2783, 10.1007/s12274-021-3286-2

Zhao, 2022, J. Am. Chem. Soc., 144, 1700, 10.1021/jacs.1c10842

Zhang, 2019, Nat. Commun., 10, 4593, 10.1038/s41467-019-12613-8

Zhu, 2021, ACS Energy Lett., 6, 3425, 10.1021/acsenergylett.1c01465

Zhan, 2022, Adv. Energy Mater., 12, 2200867, 10.1002/aenm.202200867

Wang, 2022, Matter, 5, 2209, 10.1016/j.matt.2022.04.006

Menzel, 2022, Adv. Energy Mater., 12, 2201109, 10.1002/aenm.202201109

Doherty, 2021, Science, 374, 1598, 10.1126/science.abl4890

Zhang, 2018, Science, 359, 675, 10.1126/science.aao0865

Li, 2019, Joule, 3, 2854, 10.1016/j.joule.2019.08.016

Uller Rothmann, 2020, Science, 370, 6516

Liu, 2021, J. Phys. Chem. Lett., 12, 10402, 10.1021/acs.jpclett.1c02830

Xiang, 2020, Sol. Energy Mater. Sol. Cells, 206, 110317, 10.1016/j.solmat.2019.110317

Li, 2021, Nat. Energy, 6, 624, 10.1038/s41560-021-00830-9

Yang, 2020, Mater. Today Adv., 6, 100068, 10.1016/j.mtadv.2020.100068

Zhou, 2020, Matter, 2, 360, 10.1016/j.matt.2019.12.027

Williamson, 1953, Acta Metall., 1, 22, 10.1016/0001-6160(53)90006-6

McMeekin, 2017, Adv. Mater., 29, 1607039, 10.1002/adma.201607039

Moloney, 2020, ACS Mater. Lett., 2, 1495, 10.1021/acsmaterialslett.0c00308

Cheng, 2022, Adv. Mater., 34, 2106380, 10.1002/adma.202106380

Li, 2020, J. Am. Chem. Soc., 142, 20134, 10.1021/jacs.0c09845

Meng, 2019, Adv. Funct. Mater., 29, 1902319, 10.1002/adfm.201902319

Bertolotti, 2017, ACS Nano, 11, 3819, 10.1021/acsnano.7b00017

Tan, 2020, J. Mater. Chem. A, 8, 12790, 10.1039/D0TA02726J

Meng, 2018, Adv. Mater., 30, 1706401, 10.1002/adma.201706401

Qin, 2021, Adv. Mater., 33, 2105290, 10.1002/adma.202105290

Wu, 2021, Adv. Funct. Mater., 31, 2101287, 10.1002/adfm.202101287

Meng, 2021, Small, 17, 2104165, 10.1002/smll.202104165

Niu, 2018, Adv. Mater., 30, 1706576, 10.1002/adma.201706576

Kodur, 2020, Adv. Energy Mater., 10, 1903170, 10.1002/aenm.201903170

Hidalgo, 2019, Adv. Energy Mater., 9, 1900444, 10.1002/aenm.201900444

Unger, 2014, Chem. Mater., 26, 7158, 10.1021/cm503828b

Luo, 2016, Chem. Mater., 28, 6536, 10.1021/acs.chemmater.6b02065

Luo, 2018, Adv. Funct. Mater., 28, 1706995, 10.1002/adfm.201706995

Poindexter, 2017, ACS Nano, 11, 7101, 10.1021/acsnano.7b02734

Stuckelberger, 2016, Conf. Rec. IEEE Photovoltaic Spec. Conf., 7, 1191

Rehr, 2000, Rev. Mod. Phys., 72, 621, 10.1103/RevModPhys.72.621

Sharenko, 2017, Chem. Mater., 29, 1315, 10.1021/acs.chemmater.6b04917

McLeod, 2016, Nanoscale, 8, 6361, 10.1039/C5NR06217A

Liu, 2020, Sol. Energy, 205, 202, 10.1016/j.solener.2020.05.028

Huang, 2022, Nano Res., 15, 573, 10.1007/s12274-021-3522-9

Ye, 2017, J. Am. Chem. Soc., 139, 7504, 10.1021/jacs.7b01439

Liu, 2020, J. Mater. Chem. A, 8, 3145, 10.1039/C9TA10763K

Khelifi, 2011, J. Appl. Phys., 110, 094509, 10.1063/1.3658023

Ran, 2018, Chem. Soc. Rev., 47, 4581, 10.1039/C7CS00868F

Lee, 2015, Adv. Energy Mater., 5, 1501310, 10.1002/aenm.201501310

Duan, 2015, Phys. Chem. Chem. Phys., 17, 112, 10.1039/C4CP04479G

Zhang, 2022, Energy Environ. Sci.

Heath, 2004, J. Appl. Phys., 95, 1000, 10.1063/1.1633982

Daboczi, 2019, ACS Appl. Mater. Interfaces, 11, 46808, 10.1021/acsami.9b16394

Levine, 2019, ACS Energy Lett., 4, 1150, 10.1021/acsenergylett.9b00709

Lee, 2014, J. Phys. Chem. Lett., 5, 2408, 10.1021/jz501163r

Kronik, 2001, Surf. Interface Anal., 31, 954, 10.1002/sia.1132

Kronik, 1999, Surf. Sci. Rep., 37, 1, 10.1016/S0167-5729(99)00002-3

Lee, 2013, Appl. Phys. Lett., 103, 173302, 10.1063/1.4827104

Rau, 2007, Phys. Rev. B: Condens. Matter Mater. Phys., 76, 085303, 10.1103/PhysRevB.76.085303

Walter, 2018, Adv. Energy Mater., 8, 1701522, 10.1002/aenm.201701522

Wang, 2020, ACS Appl. Mater. Interfaces, 12, 53973, 10.1021/acsami.0c17338

Chen, 2020, J. Am. Chem. Soc., 142, 6117, 10.1021/jacs.9b13396

Franssen, 2017, J. Phys. Chem. Lett., 8, 61, 10.1021/acs.jpclett.6b02542

Bernard, 2018, J. Phys. Chem. A, 122, 1560, 10.1021/acs.jpca.7b11558

Karmakar, 2018, Chem. Mater., 30, 2309, 10.1021/acs.chemmater.7b05209

Knop, 1990, Can. J. Chem., 68, 412, 10.1139/v90-063

Zhang, 2020, Joule, 4, 222, 10.1016/j.joule.2019.11.007

Hanrahan, 2018, Chem. Mater., 30, 7005, 10.1021/acs.chemmater.8b01899

Aebli, 2020, Sci. Rep., 10, 8229, 10.1038/s41598-020-65071-4

Kubicki, 2018, J. Am. Chem. Soc., 140, 3345, 10.1021/jacs.7b12860

Tan, 2014, Adv. Funct. Mater., 24, 6540, 10.1002/adfm.201401685

Zhou, 2020, Sol. RRL, 4, 2000107, 10.1002/solr.202000107

Yang, 2021, Adv. Mater., 33, 2006435, 10.1002/adma.202006435

Levine, 2021, Joule, 5, 2915, 10.1016/j.joule.2021.07.016

Xiong, 2022, Adv. Funct. Mater., 32, 2107823, 10.1002/adfm.202107823

Chen, 2021, Adv. Mater., 33, 2103394, 10.1002/adma.202103394

Wang, 2021, Matter, 4, 709, 10.1016/j.matt.2020.11.012

Wan, 2021, Adv. Mater. Interfaces, 8, 2100135, 10.1002/admi.202100135

Wan, 2021, J. Energy Chem., 57, 147, 10.1016/j.jechem.2020.08.053