Rational synthetic combination genetic devices boosting high temperature ethanol fermentation

Synthetic and Systems Biotechnology - Tập 2 - Trang 121-129 - 2017
Huan Sun1, Haiyang Jia1, Jun Li1, Xudong Feng1, Yueqin Liu2, Xiaohong Zhou2, Chun Li1,2
1School of Life Science, Beijing Institute of Technology, Beijing 100081, China
2Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China

Tài liệu tham khảo

Chu, 2012, Opportunities and challenges for a sustainable energy future, Nature, 488, 294, 10.1038/nature11475 Eggleston, 2010 Abreu-Cavalheiro, 2013, Solving ethanol production problems with genetically modified yeast strains, Braz J Microbiol Publ Braz Soc Microbiol, 44, 665, 10.1590/S1517-83822013000300001 Abdel-Banat, 2010, High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?, Appl Microbiol Biotechnol, 85, 861, 10.1007/s00253-009-2248-5 Tomás-Pejó, 2008, Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains, Biotechnol Bioeng, 100, 1122, 10.1002/bit.21849 Caspeta, 2014, Biofuels. Altered sterol composition renders yeast thermotolerant, Sci (New York, NY), 346, 75, 10.1126/science.1258137 Jia, 2016, Intelligent microbial heat-regulating engine (IMHeRE) for improved thermo-robustness and efficiency of bioconversion, ACS Synth Biol, 5, 312, 10.1021/acssynbio.5b00158 Walker, 2006, 111 Davidson, 2001, Cytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae, J Bacteriol, 183, 4580, 10.1128/JB.183.15.4580-4587.2001 Davidson, 2001, Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae, Mol Cell Biol, 21, 8483, 10.1128/MCB.21.24.8483-8489.2001 Davidson, 1996, Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae, Proc Natl Acad Sci U. S. A, 93, 5116, 10.1073/pnas.93.10.5116 Sakaki, 2003, Response of genes associated with mitochondrial function to mild heat stress in yeast Saccharomyces cerevisiae, J Biochem, 134, 373, 10.1093/jb/mvg155 Kim, 2006, Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377, J Microbiol, 44, 492 Lee, 1998, Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase, Archiv. Biochem Biophys., 359, 99, 10.1006/abbi.1998.0896 Wieser, 1991, Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae, J Biol Chem, 266, 12406, 10.1016/S0021-9258(18)98912-X Arrigo, 2002, Small stress proteins: modulation of intracellular redox state and protection against oxidative stress, Prog Mol Subcell Biol, 28, 171, 10.1007/978-3-642-56348-5_9 Richter, 2010, The heat shock response: life on the verge of death, Mol Cell, 40, 253, 10.1016/j.molcel.2010.10.006 Liu, 2014, Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices, Bioresour Technol, 170, 38, 10.1016/j.biortech.2014.07.063 Benjaphokee, 2012, CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae, New Biotechnol, 29, 166, 10.1016/j.nbt.2011.03.007 Auesukaree, 2012, Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits, J Biosci Bioeng, 114, 144, 10.1016/j.jbiosc.2012.03.012 Hasunuma, 2012, Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains, Process Biochem, 47, 1287, 10.1016/j.procbio.2012.05.004 Egorova, 2005, Industrial relevance of thermophilic Archaea, Curr Opin Microbiol, 8, 649, 10.1016/j.mib.2005.10.015 Podar, 2006, New opportunities revealed by biotechnological explorations of extremophiles, Curr Opin Biotechnol, 17, 250, 10.1016/j.copbio.2006.05.002 Jia, 2014, Enhancing stress-resistance for efficient microbial biotransformations by synthetic biology, Front Bioeng Biotechnol, 2, 10.3389/fbioe.2014.00044 Dunlop, 2011, Engineering microbial biofuel tolerance and export using efflux pumps, Mol Syst Biol, 7, 10.1038/msb.2011.21 Lin, 2013, Engineering of transcriptional regulators enhances microbial stress tolerance, Biotechnol Adv, 31, 986, 10.1016/j.biotechadv.2013.02.010 Luan, 2014, Engineering cellular robustness of microbes by introducing the GroESL chaperonins from extremophilic bacteria, J Biotechnol, 178, 38, 10.1016/j.jbiotec.2014.03.010 VanBogelen, 1987, Induction of the heat shock regulon does not produce thermotolerance in Escherichia coli, Genes & Dev, 1, 525, 10.1101/gad.1.6.525 Shao, 2009, DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways, Nucleic Acids Res, 37, 10.1093/nar/gkn991 Gunawan, 2011, Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts, Acs Nano, 5, 7214, 10.1021/nn2020248 Oshima, 1974, Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa, Int J Syst Evol Microbiol, 24, 102 Vabulas, 2010, Protein folding in the cytoplasm and the heat shock response, Cold Spring Harb Perspect Biol, 2, 10.1101/cshperspect.a004390 Haslbeck, 2005, Some like it hot: the structure and function of small heat-shock proteins, Nat Struct Mol Biol, 12, 842, 10.1038/nsmb993 Doyle, 2013, Protein rescue from aggregates by powerful molecular chaperone machines., Nature reviews, Mol Cell Biol, 14, 617 Holubářová, A., Müller, P., and Svoboda, A. A response of yeast cells to heat stress: cell viability and the stabilitz of cytoskeletal structures 2000. Smith, 2012, Three heat shock proteins are essential for rotifer thermotolerance, J Exp Mar Biol Ecol, 413, 1, 10.1016/j.jembe.2011.11.027 Vandenbroucke, 2008, Hydrogen peroxide-induced gene expression across kingdoms: a comparative analysis, Mol Biol Evol, 25, 507, 10.1093/molbev/msm276 Lin, 2012, Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742, Biomass Bioenergy, 47, 395, 10.1016/j.biombioe.2012.09.019 Turcotte, 2010, Transcriptional regulation of nonfermentable carbon utilization in budding yeast, FEMS Yeast Res, 10, 2, 10.1111/j.1567-1364.2009.00555.x