Rational synthetic combination genetic devices boosting high temperature ethanol fermentation
Tài liệu tham khảo
Chu, 2012, Opportunities and challenges for a sustainable energy future, Nature, 488, 294, 10.1038/nature11475
Eggleston, 2010
Abreu-Cavalheiro, 2013, Solving ethanol production problems with genetically modified yeast strains, Braz J Microbiol Publ Braz Soc Microbiol, 44, 665, 10.1590/S1517-83822013000300001
Abdel-Banat, 2010, High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?, Appl Microbiol Biotechnol, 85, 861, 10.1007/s00253-009-2248-5
Tomás-Pejó, 2008, Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains, Biotechnol Bioeng, 100, 1122, 10.1002/bit.21849
Caspeta, 2014, Biofuels. Altered sterol composition renders yeast thermotolerant, Sci (New York, NY), 346, 75, 10.1126/science.1258137
Jia, 2016, Intelligent microbial heat-regulating engine (IMHeRE) for improved thermo-robustness and efficiency of bioconversion, ACS Synth Biol, 5, 312, 10.1021/acssynbio.5b00158
Walker, 2006, 111
Davidson, 2001, Cytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae, J Bacteriol, 183, 4580, 10.1128/JB.183.15.4580-4587.2001
Davidson, 2001, Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae, Mol Cell Biol, 21, 8483, 10.1128/MCB.21.24.8483-8489.2001
Davidson, 1996, Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae, Proc Natl Acad Sci U. S. A, 93, 5116, 10.1073/pnas.93.10.5116
Sakaki, 2003, Response of genes associated with mitochondrial function to mild heat stress in yeast Saccharomyces cerevisiae, J Biochem, 134, 373, 10.1093/jb/mvg155
Kim, 2006, Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377, J Microbiol, 44, 492
Lee, 1998, Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase, Archiv. Biochem Biophys., 359, 99, 10.1006/abbi.1998.0896
Wieser, 1991, Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae, J Biol Chem, 266, 12406, 10.1016/S0021-9258(18)98912-X
Arrigo, 2002, Small stress proteins: modulation of intracellular redox state and protection against oxidative stress, Prog Mol Subcell Biol, 28, 171, 10.1007/978-3-642-56348-5_9
Richter, 2010, The heat shock response: life on the verge of death, Mol Cell, 40, 253, 10.1016/j.molcel.2010.10.006
Liu, 2014, Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices, Bioresour Technol, 170, 38, 10.1016/j.biortech.2014.07.063
Benjaphokee, 2012, CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae, New Biotechnol, 29, 166, 10.1016/j.nbt.2011.03.007
Auesukaree, 2012, Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits, J Biosci Bioeng, 114, 144, 10.1016/j.jbiosc.2012.03.012
Hasunuma, 2012, Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains, Process Biochem, 47, 1287, 10.1016/j.procbio.2012.05.004
Egorova, 2005, Industrial relevance of thermophilic Archaea, Curr Opin Microbiol, 8, 649, 10.1016/j.mib.2005.10.015
Podar, 2006, New opportunities revealed by biotechnological explorations of extremophiles, Curr Opin Biotechnol, 17, 250, 10.1016/j.copbio.2006.05.002
Jia, 2014, Enhancing stress-resistance for efficient microbial biotransformations by synthetic biology, Front Bioeng Biotechnol, 2, 10.3389/fbioe.2014.00044
Dunlop, 2011, Engineering microbial biofuel tolerance and export using efflux pumps, Mol Syst Biol, 7, 10.1038/msb.2011.21
Lin, 2013, Engineering of transcriptional regulators enhances microbial stress tolerance, Biotechnol Adv, 31, 986, 10.1016/j.biotechadv.2013.02.010
Luan, 2014, Engineering cellular robustness of microbes by introducing the GroESL chaperonins from extremophilic bacteria, J Biotechnol, 178, 38, 10.1016/j.jbiotec.2014.03.010
VanBogelen, 1987, Induction of the heat shock regulon does not produce thermotolerance in Escherichia coli, Genes & Dev, 1, 525, 10.1101/gad.1.6.525
Shao, 2009, DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways, Nucleic Acids Res, 37, 10.1093/nar/gkn991
Gunawan, 2011, Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts, Acs Nano, 5, 7214, 10.1021/nn2020248
Oshima, 1974, Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa, Int J Syst Evol Microbiol, 24, 102
Vabulas, 2010, Protein folding in the cytoplasm and the heat shock response, Cold Spring Harb Perspect Biol, 2, 10.1101/cshperspect.a004390
Haslbeck, 2005, Some like it hot: the structure and function of small heat-shock proteins, Nat Struct Mol Biol, 12, 842, 10.1038/nsmb993
Doyle, 2013, Protein rescue from aggregates by powerful molecular chaperone machines., Nature reviews, Mol Cell Biol, 14, 617
Holubářová, A., Müller, P., and Svoboda, A. A response of yeast cells to heat stress: cell viability and the stabilitz of cytoskeletal structures 2000.
Smith, 2012, Three heat shock proteins are essential for rotifer thermotolerance, J Exp Mar Biol Ecol, 413, 1, 10.1016/j.jembe.2011.11.027
Vandenbroucke, 2008, Hydrogen peroxide-induced gene expression across kingdoms: a comparative analysis, Mol Biol Evol, 25, 507, 10.1093/molbev/msm276
Lin, 2012, Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742, Biomass Bioenergy, 47, 395, 10.1016/j.biombioe.2012.09.019
Turcotte, 2010, Transcriptional regulation of nonfermentable carbon utilization in budding yeast, FEMS Yeast Res, 10, 2, 10.1111/j.1567-1364.2009.00555.x
