Rational equivalence on singular varieties
Publications Mathématiques de l'Institut des Hautes Études Scientifiques - Tập 45 - Trang 147-167 - 1975
Tài liệu tham khảo
C. Chevalley, A. Grothendieck andJ.-P. Serre,Anneaux de Chow et applications, Séminaire C. Chevalley, 2e année, Secr. Math. Paris, 1958.
P. Baum, W. Fulton andR. MacPherson, Riemann-Roch for singular varieties,Publ. Math. I.H.E.S., no 45 (1975), 101–145.
A. Grothendieck andJ. Dieudonné, Eléments de géométrie algébrique,Publ. Math. I.H.E.S., nos 4, 8, 11, 17, 20, 24, 28, 32, 1960–67.
W. Fulton,Canonical classes for singular varieties, to appear.
J.-P. Serre, Faisceaux algébriques cohérents,Ann. of Math.,61 (1955), 197–278.
A. Grothendieck, La théorie des classes de Chern,Bull. Soc. Math. France,86 (1958), 137–154.
R. MacPherson, Chern classes on singular varieties,Ann. of Math.,100 (1974).
J. Roberts, Chow’s Moving Lemma,Algebraic Geometry, Proceedings of the 5th Nordic Summer-School in Mathematics, 89–96,Oslo 1970, Wolters-Noordhoff, Groningen, 1970.
J.-P. Serre, Algèbre locale. Multiplicités,Springer Lecture Notes in Mathematics,11 (1965).
P. Berthelot, A. Grothendieck, L. Illusie et al., Théorie des intersections et Théorème de Riemann-Roch,Springer Lecture Notes in Mathematics,225 (1971).
