Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives
Tóm tắt
Từ khóa
Tài liệu tham khảo
S.M. Moghimi, A.C. Hunter, J.C. Murray, Nanomedicine: current status and future prospects. FASEB J. 19(3), 311–330 (2005)
K. Riehemann et al., Nanomedicine—challenge and perspectives. Angew. Chem. Int. Ed. 48(5), 872–897 (2009)
R.A. Freitas Jr, What is nanomedicine? Nanomedicine: nanotechnology. Biol. Med. 1(1), 2–9 (2005)
O.C. Farokhzad, R. Langer, Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev. 58(14), 1456–1459 (2006)
D. Astruc, E. Boisselier, C. Ornelas, Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 110(4), 1857–1959 (2010)
H.K. Daima, V. Bansal, Chapter 10—influence of physicochemical properties of nanomaterials on their antibacterial applications, in Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases, ed. by M.R. Kon (Academic Press, Boston, 2015), pp. 151–166
E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38(6), 1759–1782 (2009)
N.T.K. Thanh, L.A.W. Green, Functionalisation of nanoparticles for biomedical applications. Nano Today 5(3), 213–230 (2010)
N. Sanvicens, M.P. Marco, Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends Biotechnol. 26(8), 425–433 (2008)
P.K. Jain et al., Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41(12), 1578–1586 (2008)
J. Peteiro-Cartelle et al., One example on how colloidal nano- and microparticles could contribute to medicine. Nanomedicine 4(8), 967–979 (2009)
P.R. Selvakannan et al., Probing the effect of charge transfer enhancement in off resonance mode SERS via conjugation of the probe dye between silver nanoparticles and metal substrates. Phys. Chem. Chem. Phys. 15(31), 12920–12929 (2013)
V.E. Kagan, H. Bayir, A.A. Shvedova, Nanomedicine and nanotoxicology: two sides of the same coin. Nanomed. Nanotechnol. Biol. Med. 1(4), 313–316 (2005)
L.E. Euliss et al., Imparting size, shape, and composition control of materials for nanomedicine. Chem. Soc. Rev. 35(11), 1095–1104 (2006)
T.K. Sharma et al., Aptamer-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoparticles for kanamycin detection. Chem. Commun. 50, 15856–15859 (2014)
A.F. Chrimes et al., Active control of silver nanoparticles spacing using dielectrophoresis for SERS. Anal. Chem. 84(9), 4029–4035 (2012)
H.K. Daima, et al. Tyrosine mediated gold, silver and their alloy nanoparticles synthesis: antibacterial activity toward gram positive and gram negative bacterial strains, in 2011 International Conference on Nanoscience, Technology and Societal Implications, NSTSI11 (2011)
S.K. Singh, P.P. Kulkarni, D. Dash, Biomedical applications of nanomaterials: an overview, in Bio-Nanotechnology, ed. by D. Bagchi, M. Bagchi, H. Moriyama, F. Shahidi (Blackwell Publishing Ltd, New York, 2013), pp. 1–32
J.E. Gagner et al., Engineering nanomaterials for biomedical applications requires understanding the nano-bio interface: a perspective. J. Phys. Chem. Lett. 3(21), 3149–3158 (2012)
C.J. Murphy et al., Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41(12), 1721–1730 (2008)
E.E. Connor et al., Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3), 325–327 (2005)
H.K. Daima et al., Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale 6(2), 758–765 (2014)
H.K. Daima et al., Fine-tuning the antimicrobial profile of biocompatible gold nanoparticles by sequential surface functionalization using polyoxometalates and lysine. PLoS ONE 8(10), 1–14 (2013)
X. Li et al., Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8(10), 10682–10686 (2014)
Y.C. Yeh, B. Creran, V.M. Rotello, Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4(6), 1871–1880 (2012)
U.H.F. Bunz, V.M. Rotello, Gold nanoparticle-fluorophore complexes: sensitive and discerning “noses” for biosystems sensing. Angew. Chem. Int. Ed. 49(19), 3268–3279 (2010)
P. Ghosh et al., Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008)
C.M. Goodman et al., Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem. 15(4), 897–900 (2004)
A.B. Seabra et al., Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 27(2), 159–168 (2014)
Y. Yang et al., Graphene based materials for biomedical applications. Mater. Today 16(10), 365–373 (2013)
C. Chung et al., Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46(10), 2211–2224 (2013)
R. Partha, J.L. Conyers, Biomedical applications of functionalized fullerene-based nanomaterials. Int. J. Nanomed. 4, 261–275 (2009)
R. Bakry et al., Medicinal applications of fullerenes. Int. J. Nanomed. 2(4), 639–649 (2007)
X. Gao et al., In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16(1), 63–72 (2005)
J.P. Rao, K.E. Geckeler, Polymer nanoparticles: preparation techniques and size-control parameters. Prog. Polym. Sci. 36(7), 887–913 (2011)
A. Kumari, S.K. Yadav, S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B 75(1), 1–18 (2010)
H.K. Daima, Towards fine-tuning the surface corona of inorganic and organic nanomaterials to control their properties at Nano-Bio Interface, Ph.D. thesis, RMIT University, Melbourne (Australia) 1–236 (2013)
T.M. Allen, P.R. Cullis, Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65(1), 36–48 (2013)
M. Mahmoudi et al., Effect of nanoparticles on the cell life cycle. Chem. Rev. 111(5), 3407–3432 (2011)
M.M.B. Holl, Nanotoxicology: a personal perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(4), 353–359 (2009)
P. Hinderliter et al., ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part. Fibre Toxicol. 7(1), 36 (2010)
E.C. Cho, Q. Zhang, Y. Xia, The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat. Nanotechnol. 6(6), 385–391 (2011)
E.K. Rushton et al., Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response-metrics. Journal of toxicology and environmental health. Part A (2010). doi: 10.1080/15287390903489422
G. Oberdörster, Nanotoxicology: in vitro–in vivo dosimetry. Environ. Health Perspect. 120(1), a13–a13 (2012)
G. DeLoid et al., Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat. Commun. 5, 1–10 (2014)
J. Zhao, V. Castranova, Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health B 14(8), 593–632 (2011)
H.F. Krug, P. Wick, Nanotoxicology: an interdisciplinary challenge. Angew. Chem. Int. Ed. 50(6), 1260–1278 (2011)
A.E. Nel et al., Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8(7), 543–557 (2009)
D.W. Hobson, Commercialization of nanotechnology. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(2), 189–202 (2009)
G. Oberdörster, Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J. Intern. Med. 267(1), 89–105 (2010)
L. Dykman, N. Khlebtsov, Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41(6), 2256–2282 (2012)
N. Khlebtsov, L. Dykman, Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 40(3), 1647–1671 (2011)
C.M. Niemeyer, C.A. Mirkin (eds.), Nanobiotechnology: Concept, Application and Perspectives (Wiley-VCH verlag GmbH & Co. KGaA, New York, 2004)
C.A. Mirkin, C.M. Niemeyer (eds.), Nanobiotechnology II: More Concepts and Applications (Wiley-VCH verlag GmbH & Co. KGaA, New York, 2007)
S. Parveen, R. Misra, S.K. Sahoo, Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed. Nanotechnol. Biol. Med. 8(2), 147–166 (2012)
W.H. Suh et al., Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 87(3), 133–170 (2009)
C. Carlson et al., Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B 112(43), 13608–13619 (2008)
L. Tang et al., Investigating the optimal size of anticancer nanomedicine. Proc. Natl. Acad. Sci. 111(43), 15344–15349 (2014)
M. Longmire, P.L. Choyke, H. Kobayashi, Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3(5), 703–717 (2008)
W. Jiang et al., Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3(3), 145–150 (2008)
L. Gao et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2(9), 577–583 (2007)
J.R. Morones et al., The bactericidal effect of silver nanoparticles. Nanotechnology 16(10), 2346–2353 (2005)
C.P. Adams et al., Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS ONE 9(1), 1–12 (2014)
S. Kang et al., Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13), 6409–6413 (2008)
V. Bansal et al., Shape dependent electrocatalytic behaviour of silver nanoparticles. CrystEngComm 12(12), 4280–4286 (2010)
C. Burda et al., Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005)
R. Narayanan, M.A. El-Sayed, Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 4(7), 1343–1348 (2004)
P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3), 788–800 (1996)
M. Mahmoudi et al., Protein-nanoparticle interactions: opportunities and challenges. Chem. Rev. 111(9), 5610–5637 (2011)
S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(6), 1712–1720 (2007)
H.K. Daima, P. Selvakannan, S.K. Bhargava, S.K. Shastry, V. Bansal. Amino acids-conjugated gold, silver and their alloy nanoparticles: Role of surface chemistry and metal composition on peroxidase like activity, in Technical Proceedings of Nanotech 2014 TechConnect World Conference and Expo (NSTI, Washington, USA, 2014)
G. Oberdorster, E. Oberdorster, J. Oberdorster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7), 823–839 (2005)
N. Kallay, S. Zalac, Stability of nanodispersions: a model for kinetics of aggregation of nanoparticles. J. Colloid Interface Sci. 253(1), 70–76 (2002)
R. Richards, H. Bönnemann, Synthetic approaches to metallic nanomaterials, in Nanofabrication Towards Biomedical Applications, ed. Challa S. S. R. Kumar, J. Hormes, C. Leuschner (Wiley-VCH Verlag GmbH & Co. KGaA, New York, 2005) p. 1–32.
N.T.K. Thanh, Z. Rosenzweig, Development of an aggregation-based immunoassay for anti-protein a using gold nanoparticles. Anal. Chem. 74(7), 1624–1628 (2002)
K. Sato, K. Hosokawa, M. Maeda, Rapid aggregation of gold nanoparticles induced by non-cross-linking dna hybridization. J. Am. Chem. Soc. 125(27), 8102–8103 (2003)
C.N. Lok et al., Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 12(4), 527–534 (2007)
Y.H. Kim et al., Synthesis and characterization of antibacterial Ag–SiO2 nanocomposite. J. Phys. Chem. C 111(9), 3629–3635 (2007)
Y.H. Kim et al., Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J. Phys. Chem. B 110(49), 24923–24928 (2006)
S.J. Soenen et al., (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem. Rev. 115(5), 2109–2135 (2015)
V. Sée et al., Cathepsin L digestion of nanobioconjugates upon endocytosis. ACS Nano 3(9), 2461–2468 (2009)
F. Zhao et al., Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7(10), 1322–1337 (2011)
T. Cedervall et al., Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. 104(7), 2050–2055 (2007)
S. Tenzer et al., Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8(10), 772–781 (2013)
K. Riehemann et al., Nanomedicine—challenge and perspectives. Angew. Chem. Int. Ed. Engl. 48(5), 872–897 (2009)
M.P. Monopoli et al., Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7(12), 779–786 (2012)
R.P. Bagwe, L.R. Hilliard, W. Tan, Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22(9), 4357–4362 (2006)
S. Laurent et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108(6), 2064–2110 (2008)
M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104(1), 293–346 (2004)
R. Mout et al., Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev. 41(7), 2539–2544 (2012)
Y.K. Jo et al., Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue. ACS Appl. Mater. Interfaces 6(22), 20242–20253 (2014)
K. Kawata, M. Osawa, S. Okabe, In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ. Sci. Technol. 43(15), 6046–6051 (2009)
S.T. Kim et al., The role of surface functionality in determining nanoparticle cytotoxicity. Acc. Chem. Res. 46(3), 681–691 (2013)
M.R. Wiesner et al., Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40(14), 4336–4345 (2006)
O. Ozay et al., P(4-VP) based nanoparticles and composites with dual action as antimicrobial materials. Colloids Surf. B 79(2), 460–466 (2010)
G. Sahay, D.Y. Alakhova, A.V. Kabanov, Endocytosis of nanomedicines. J. Controlled Release 145(3), 182–195 (2010)
T.-H. Chung et al., The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 28(19), 2959–2966 (2007)
R.R. Arvizo et al., Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 10(7), 2543–2548 (2010)
L.K. Adams, D.Y. Lyon, P.J.J. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40(19), 3527–3532 (2006)
B.B. Manshian et al., High-content imaging and gene expression analysis to study cell–nanomaterial interactions: the effect of surface hydrophobicity. Biomaterials 35(37), 9941–9950 (2014)