Rational design of short antifreeze peptides derived from Rhagium inquisitor antifreeze protein

Biocatalysis and Agricultural Biotechnology - Tập 23 - Trang 101447 - 2020
Lai Fun Kong1, Ahmad Ayad Qatran Al-Khdhairawi1, Bimo Ario Tejo1
1Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Malaysia

Tài liệu tham khảo

Cid, 2016, Properties and biotechnological applications of ice-binding proteins in bacteria, FEMS Microbiol. Lett., 363, 10.1093/femsle/fnw099 Do, 2014, Structure-based characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1, Acta Crystallogr. Sect. D Biol. Crystallogr., 70, 1061, 10.1107/S1399004714000996 Gibson, 2009, Inhibition of ice crystal growth by synthetic glycopolymers: implications for the rational design of antifreeze glycoprotein mimics, Biomacromolecules, 10, 328, 10.1021/bm801069x Haji-Akbari, 2016, Rating antifreeze proteins: not a breeze, Proc. Natl. Acad. Sci., 113, 3714, 10.1073/pnas.1602196113 Hakim, 2012, Expression, purification, crystallization and preliminary crystallographic studies of Rhagium inquisitor antifreeze protein, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 68, 547, 10.1107/S1744309112010421 Hashim, 2013, Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma Antarctica PI12, Extremophiles, 17, 63, 10.1007/s00792-012-0494-4 Kar, 2016, Structure and dynamics of antifreeze protein-model membrane interactions: a combined spectroscopic and molecular dynamics study, J. Phys. Chem. B, 120, 902, 10.1021/acs.jpcb.5b11164 Kristiansen, 1999, Antifreeze activity in the cerambycid beetle Rhagium inquisitor, J. Comp. Physiol. B Biochem. Syst. Environ. Physiol., 169, 55, 10.1007/s003600050193 Kristiansen, 2011, Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor, Insect Biochem. Mol. Biol., 41, 109, 10.1016/j.ibmb.2010.11.002 Kristiansen, 2012, Hyperactive antifreeze proteins from longhorn beetles: some structural insights, J. Insect Physiol., 58, 1502, 10.1016/j.jinsphys.2012.09.004 Kufareva, 2011, Methods of protein structure comparison, Methods Mol. Biol., 851, 231, 10.1007/978-1-61779-588-6_10 Liepinsh, 2002, Solution structure of a hydrophobic analogue of the winter flounder antifreeze protein, Eur. J. Biochem., 269, 1259, 10.1046/j.1432-1033.2002.02766.x Maupetit, 2010, A fast method for large-scale de novo peptide and miniprotein structure prediction, J. Comput. Chem., 31, 726 Olijve, 2016, Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins, Proc. Natl. Acad. Sci. U. S. A, 113, 3740, 10.1073/pnas.1524109113 Rahman, 2019, Ice recrystallization is strongly inhibited when antifreeze proteins bind to multiple ice planes, Sci. Rep., 9, 2212, 10.1038/s41598-018-36546-2 Shah, 2012, Solution structures, dynamics, and ice growth inhibitory activity of peptide fragments derived from an Antarctic yeast protein, PLoS One, 7, 10.1371/journal.pone.0049788 Sicheri, 1995, Ice-binding structure and mechanism of an antifreeze protein from winter flounder, Nature, 375, 427, 10.1038/375427a0 Trevino, 2007, Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa, J. Mol. Biol., 366, 449, 10.1016/j.jmb.2006.10.026 Zhang, 2017, Fabrication of anti-icing surfaces by short α-helical peptides, J. Am. Chem. Soc., 10, 1957 Zhang, 1998, Structure-function relationships in a type I antifreeze polypeptide, J. Biol. Chem., 273, 34806, 10.1074/jbc.273.52.34806