Rational design of short antifreeze peptides derived from Rhagium inquisitor antifreeze protein
Tài liệu tham khảo
Cid, 2016, Properties and biotechnological applications of ice-binding proteins in bacteria, FEMS Microbiol. Lett., 363, 10.1093/femsle/fnw099
Do, 2014, Structure-based characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1, Acta Crystallogr. Sect. D Biol. Crystallogr., 70, 1061, 10.1107/S1399004714000996
Gibson, 2009, Inhibition of ice crystal growth by synthetic glycopolymers: implications for the rational design of antifreeze glycoprotein mimics, Biomacromolecules, 10, 328, 10.1021/bm801069x
Haji-Akbari, 2016, Rating antifreeze proteins: not a breeze, Proc. Natl. Acad. Sci., 113, 3714, 10.1073/pnas.1602196113
Hakim, 2012, Expression, purification, crystallization and preliminary crystallographic studies of Rhagium inquisitor antifreeze protein, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 68, 547, 10.1107/S1744309112010421
Hashim, 2013, Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma Antarctica PI12, Extremophiles, 17, 63, 10.1007/s00792-012-0494-4
Kar, 2016, Structure and dynamics of antifreeze protein-model membrane interactions: a combined spectroscopic and molecular dynamics study, J. Phys. Chem. B, 120, 902, 10.1021/acs.jpcb.5b11164
Kristiansen, 1999, Antifreeze activity in the cerambycid beetle Rhagium inquisitor, J. Comp. Physiol. B Biochem. Syst. Environ. Physiol., 169, 55, 10.1007/s003600050193
Kristiansen, 2011, Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor, Insect Biochem. Mol. Biol., 41, 109, 10.1016/j.ibmb.2010.11.002
Kristiansen, 2012, Hyperactive antifreeze proteins from longhorn beetles: some structural insights, J. Insect Physiol., 58, 1502, 10.1016/j.jinsphys.2012.09.004
Kufareva, 2011, Methods of protein structure comparison, Methods Mol. Biol., 851, 231, 10.1007/978-1-61779-588-6_10
Liepinsh, 2002, Solution structure of a hydrophobic analogue of the winter flounder antifreeze protein, Eur. J. Biochem., 269, 1259, 10.1046/j.1432-1033.2002.02766.x
Maupetit, 2010, A fast method for large-scale de novo peptide and miniprotein structure prediction, J. Comput. Chem., 31, 726
Olijve, 2016, Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins, Proc. Natl. Acad. Sci. U. S. A, 113, 3740, 10.1073/pnas.1524109113
Rahman, 2019, Ice recrystallization is strongly inhibited when antifreeze proteins bind to multiple ice planes, Sci. Rep., 9, 2212, 10.1038/s41598-018-36546-2
Shah, 2012, Solution structures, dynamics, and ice growth inhibitory activity of peptide fragments derived from an Antarctic yeast protein, PLoS One, 7, 10.1371/journal.pone.0049788
Sicheri, 1995, Ice-binding structure and mechanism of an antifreeze protein from winter flounder, Nature, 375, 427, 10.1038/375427a0
Trevino, 2007, Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa, J. Mol. Biol., 366, 449, 10.1016/j.jmb.2006.10.026
Zhang, 2017, Fabrication of anti-icing surfaces by short α-helical peptides, J. Am. Chem. Soc., 10, 1957
Zhang, 1998, Structure-function relationships in a type I antifreeze polypeptide, J. Biol. Chem., 273, 34806, 10.1074/jbc.273.52.34806