Rational design of semiconductor-based photocatalysts for advanced photocatalytic hydrogen production: the case of cadmium chalcogenides

Inorganic Chemistry Frontiers - Tập 3 Số 5 - Trang 591-615
You Xu1,2,3,4,5, Yi Huang1,6,2,4,5, Bin Zhang1,6,2,4,5
1China
2Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
3School of Science
4Tianjin 300072
5Tianjin University
6Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

Tóm tắt

This review summarizes the recent advances in developing CdX (X = S, Se, Te)-based photocatalyst systems for photocatalytic hydrogen production from water.

Từ khóa


Tài liệu tham khảo

Tachibana, 2012, Nat. Photonics, 6, 511, 10.1038/nphoton.2012.175

Armaroli, 2007, Angew. Chem., Int. Ed., 46, 52, 10.1002/anie.200602373

Barber, 2009, Chem. Soc. Rev., 38, 185, 10.1039/B802262N

Cook, 2012, Chem. Rev., 110, 6474, 10.1021/cr100246c

Chow, 2003, Science, 302, 1528, 10.1126/science.1091939

Han, 2014, Acc. Chem. Res., 47, 2537, 10.1021/ar5001605

Wen, 2013, Acc. Chem. Res., 46, 2355, 10.1021/ar300224u

Wu, 2014, Acc. Chem. Res., 47, 2177, 10.1021/ar500140r

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0

Wilker, 2012, Isr. J. Chem., 52, 1002, 10.1002/ijch.201200073

Amelia, 2012, Chem. Soc. Rev., 41, 5728, 10.1039/c2cs35117j

Li, 2015, Adv. Energy Mater., 5, 1500010, 10.1002/aenm.201500010

Chen, 2010, Chem. Rev., 110, 6503, 10.1021/cr1001645

Fan, 2013, Phys. Chem. Chem. Phys., 15, 2632, 10.1039/c2cp43524a

Marschall, 2014, Adv. Funct. Mater., 24, 2421, 10.1002/adfm.201303214

Kudo, 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G

Ran, 2014, Chem. Soc. Rev., 43, 7787, 10.1039/C3CS60425J

Xu, 2015, Appl. Surf. Sci., 351, 779, 10.1016/j.apsusc.2015.05.171

Chen, 2013, Front. Energy, 7, 111, 10.1007/s11708-012-0228-4

Hisatomi, 2014, Chem. Soc. Rev., 43, 7520, 10.1039/C3CS60378D

Vaneski, 2014, J. Photochem. Photobiol., C, 19, 52, 10.1016/j.jphotochemrev.2013.12.001

Zhang, 2013, Catal. Sci. Technol., 3, 1672, 10.1039/c3cy00018d

Osterloh, 2013, Chem. Soc. Rev., 42, 2294, 10.1039/C2CS35266D

Liao, 2012, Catalysts, 2, 490, 10.3390/catal2040490

Wang, 2015, Coord. Chem. Rev., 287, 1, 10.1016/j.ccr.2014.12.005

Xu, 2015, Catal. Sci. Technol., 5, 3084, 10.1039/C5CY00365B

Li, 2015, J. Mater. Chem. A, 3, 2485, 10.1039/C4TA04461D

Qu, 2013, Chem. Soc. Rev., 42, 2568, 10.1039/C2CS35355E

Zhang, 2013, Chem. – Asian J., 8, 26, 10.1002/asia.201200123

Yang, 2013, Acc. Chem. Res., 46, 1900, 10.1021/ar300227e

Meisser, 1988, J. Phys. Chem., 92, 3476, 10.1021/j100323a032

Bao, 2007, J. Phys. Chem. C, 111, 17527, 10.1021/jp076566s

Li, 2008, Int. J. Hydrogen Energy, 33, 2007, 10.1016/j.ijhydene.2008.02.023

Wang, 2015, J. Phys. Chem. C, 119, 20555, 10.1021/acs.jpcc.5b07370

Wang, 2012, J. Alloys Compd., 535, 15, 10.1016/j.jallcom.2012.04.082

Frame, 2008, Chem. Commun., 2206, 10.1039/b718796c

Xu, 2013, Chem. Commun., 49, 9803, 10.1039/c3cc46342g

Huang, 2015, J. Mater. Chem. A, 3, 19507, 10.1039/C5TA05422B

Peng, 2015, Chem. Commun., 51, 4677, 10.1039/C5CC00136F

Sathish, 2007, Catal. Today, 29, 421, 10.1016/j.cattod.2006.12.008

Zhao, 2013, ACS Nano, 7, 4316, 10.1021/nn400826h

Grigioni, 2015, Appl. Catal., A, 10.1016/j.apcata.2015.09.021

Yu, 2012, Angew. Chem., Int. Ed., 51, 897, 10.1002/anie.201105786

Liu, 2011, Energy Environ. Sci., 4, 1372, 10.1039/c0ee00604a

Liu, 2011, Chem. Phys. Lett., 509, 43, 10.1016/j.cplett.2011.04.073

Zhang, 2013, ChemSusChem, 6, 2009, 10.1002/cssc.201300409

Zhang, 2010, Int. J. Hydrogen Energy, 35, 7051, 10.1016/j.ijhydene.2009.12.132

Kimi, 2011, Int. J. Hydrogen Energy, 36, 9453, 10.1016/j.ijhydene.2011.05.044

Yu, 2013, Chem. Commun., 49, 10142, 10.1039/c3cc45568h

Yu, 2010, Green Chem., 12, 1611, 10.1039/c0gc00236d

Garaje, 2013, Environ. Sci. Technol., 47, 6664, 10.1021/es3045955

Yu, 2013, Chem. – Eur. J., 19, 2433, 10.1002/chem.201202778

Kubacka, 2012, Chem. Rev., 112, 1555, 10.1021/cr100454n

Ikeue, 2010, Chem. Mater., 22, 743, 10.1021/cm9026013

Kale, 2006, Adv. Funct. Mater., 16, 1349, 10.1002/adfm.200500525

Wu, 2012, Angew. Chem., Int. Ed., 51, 3211, 10.1002/anie.201108098

Li, 2013, ACS Catal., 3, 882, 10.1021/cs4000975

Zhang, 2013, Catal. Sci. Technol., 3, 1790, 10.1039/c3cy00066d

Bao, 2008, Chem. Mater., 20, 110, 10.1021/cm7029344

Amirav, 2010, J. Phys. Chem. Lett., 1, 1051, 10.1021/jz100075c

Yan, 2009, J. Catal., 266, 165, 10.1016/j.jcat.2009.06.024

Wang, 2013, J. Phys. Chem. C, 117, 783, 10.1021/jp309603c

Bang, 2012, J. Phys. Chem. Lett., 3, 3781, 10.1021/jz301732n

Yu, 2012, RSC Adv., 2, 11829, 10.1039/c2ra22019a

Jin, 2013, J. Mater. Chem. A, 1, 10927, 10.1039/c3ta12301d

Xiang, 2013, Appl. Catal., B, 138, 299, 10.1016/j.apcatb.2013.03.005

Silva, 2008, J. Phys. Chem. C, 112, 12069, 10.1021/jp8037279

Sathish, 2006, Int. J. Hydrogen Energy, 31, 891, 10.1016/j.ijhydene.2005.08.002

Girginer, 2009, Int. J. Hydrogen Energy, 34, 1176, 10.1016/j.ijhydene.2008.10.086

Li, 2009, J. Phys. Chem. C, 113, 9352, 10.1021/jp901505j

Jang, 2007, J. Phys. Chem. C, 111, 13280, 10.1021/jp072683b

Jing, 2006, J. Phys. Chem. B, 110, 11139, 10.1021/jp060905k

Bao, 2006, Chem. Lett., 35, 318, 10.1246/cl.2006.318

Zhuang, 2015, Angew. Chem., Int. Ed., 54, 11495, 10.1002/anie.201505442

Tongying, 2014, Nanoscale, 6, 4117, 10.1039/C4NR00298A

Navarro, 2008, Int. J. Hydrogen Energy, 33, 4265, 10.1016/j.ijhydene.2008.05.048

Saha, 2014, J. Am. Chem. Soc., 136, 14845, 10.1021/ja509019k

Thote, 2014, Chem. – Eur. J., 20, 15961, 10.1002/chem.201403800

Zhang, 2009, Appl. Surf. Sci., 255, 4863, 10.1016/j.apsusc.2008.12.019

Sasikala, 2011, J. Mater. Chem., 21, 16566, 10.1039/c1jm12531a

Rufus, 1995, J. Photochem. Photobiol., A, 91, 63, 10.1016/1010-6030(95)04080-Y

Rufus, 1990, Langmuir, 6, 565, 10.1021/la00093a008

Wang, 2015, Int. J. Hydrogen Energy, 40, 340, 10.1016/j.ijhydene.2014.11.005

Simon, 2014, Nat. Mater., 13, 1013, 10.1038/nmat4049

Chen, 2014, Appl. Surf. Sci., 316, 590, 10.1016/j.apsusc.2014.08.053

Zhukovskyi, 2015, ACS Catal., 5, 6615, 10.1021/acscatal.5b01812

Cao, 2015, Appl. Catal., B, 162, 381, 10.1016/j.apcatb.2014.07.014

Dinh, 2013, J. Mater. Chem. A, 1, 13308, 10.1039/c3ta12914d

Li, 2013, Energy Environ. Sci., 6, 465, 10.1039/C2EE23898E

Khan, 2012, J. Mater. Chem., 22, 12090, 10.1039/c2jm31148h

Chen, 2013, Catal. Commun., 36, 104, 10.1016/j.catcom.2013.03.016

Chen, 2014, Appl. Catal., B, 152–153, 68, 10.1016/j.apcatb.2014.01.022

Yan, 2014, Int. J. Hydrogen Energy, 39, 13353, 10.1016/j.ijhydene.2014.04.121

Yuan, 2015, Dalton Trans., 44, 1680, 10.1039/C4DT03197K

Shen, 2012, J. Mater. Chem., 22, 19646, 10.1039/c2jm33432a

Ran, 2011, Green Chem., 13, 2708, 10.1039/c1gc15465f

Yan, 2014, J. Phys. Chem. C, 118, 22896, 10.1021/jp5065402

Ran, 2014, ChemSusChem, 7, 3426, 10.1002/cssc.201402574

Zhang, 2014, ACS Appl. Mater. Interfaces, 6, 13406, 10.1021/am501216b

Lee, 2014, Chem. – Eur. J., 20, 17004, 10.1002/chem.201404472

Zong, 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825

Cao-Thang, 2013, J. Mater. Chem. A, 1, 13308, 10.1039/c3ta12914d

Jia, 2014, Chem. Commun., 50, 1185, 10.1039/C3CC47301E

Nguyen, 2013, Nanoscale, 5, 1479, 10.1039/c2nr34037b

Zhang, 2014, Chem. – Eur. J., 20, 10632, 10.1002/chem.201402522

Lu, 2014, Catal. Sci. Technol., 4, 2650, 10.1039/C4CY00331D

Xiong, 2015, J. Mater. Chem. A, 3, 12631, 10.1039/C5TA02438B

Sasikala, 2015, Colloids Surf., A, 481, 485, 10.1016/j.colsurfa.2015.06.027

Chen, 2015, Angew. Chem., Int. Ed., 54, 1210, 10.1002/anie.201410172

Zong, 2011, J. Phys. Chem. C, 115, 12202, 10.1021/jp2006777

Tang, 2011, Angew. Chem., Int. Ed., 50, 10203, 10.1002/anie.201104412

Zhang, 2010, Chem. Commun., 46, 7631, 10.1039/c0cc01562h

Zhang, 2013, Phys. Chem. Chem. Phys., 15, 12088, 10.1039/c3cp50734c

Zhang, 2014, Adv. Energy Mater., 4, 1301925, 10.1002/aenm.201301925

Li, 2013, Int. J. Hydrogen Energy, 38, 11268, 10.1016/j.ijhydene.2013.06.067

Devi, 2014, Int. J. Hydrogen Energy, 39, 19424, 10.1016/j.ijhydene.2014.09.087

Wang, 2012, Appl. Surf. Sci., 259, 118, 10.1016/j.apsusc.2012.07.003

Yuan, 2013, Int. J. Hydrogen Energy, 38, 7218, 10.1016/j.ijhydene.2013.03.169

Zhang, 2013, Int. J. Hydrogen Energy, 38, 11811, 10.1016/j.ijhydene.2013.06.115

Zhang, 2013, ChemSusChem, 6, 2009, 10.1002/cssc.201300409

Zhang, 2013, Dalton Trans., 42, 12998, 10.1039/c3dt51256h

Liu, 2010, Int. J. Hydrogen Energy, 35, 7080, 10.1016/j.ijhydene.2010.01.028

Gupta, 2014, Chem. – Asian J., 9, 1311, 10.1002/asia.201301537

Cao, 2014, Chem. Commun., 50, 10427, 10.1039/C4CC05026F

Sun, 2015, Energy Environ. Sci., 8, 2668, 10.1039/C5EE01310K

Yue, 2015, J. Mater. Chem. A, 3, 16941, 10.1039/C5TA03949E

Sun, 2015, J. Mater. Chem. A, 3, 10243, 10.1039/C5TA02105G

Sun, 2015, Catal. Sci. Technol., 5, 4964, 10.1039/C5CY01293G

Cao, 2015, J. Mater. Chem. A, 3, 6096, 10.1039/C4TA07149B

Jang, 2008, Appl. Catal., A, 346, 149, 10.1016/j.apcata.2008.05.020

Brown, 2010, J. Am. Chem. Soc., 132, 9672, 10.1021/ja101031r

Brown, 2012, J. Am. Chem. Soc., 134, 5627, 10.1021/ja2116348

Wang, 2011, Angew. Chem., Int. Ed., 50, 3193, 10.1002/anie.201006352

Jian, 2013, Nat. Commun., 4, 2695, 10.1038/ncomms3695

Li, 2013, Energy Environ. Sci., 6, 2597, 10.1039/c3ee40992a

Wang, 2013, Angew. Chem., Int. Ed., 52, 8134, 10.1002/anie.201303110

Liang, 2015, Chem. – Eur. J., 21, 3187, 10.1002/chem.201406361

Wen, 2011, J. Catal., 281, 318, 10.1016/j.jcat.2011.05.015

Huang, 2012, J. Am. Chem. Soc., 134, 16472, 10.1021/ja3062584

Gimbert-Suriñach, 2014, J. Am. Chem. Soc., 136, 7655, 10.1021/ja501489h

Chen, 2015, J. Mater. Chem. A, 3, 15729, 10.1039/C5TA03515E

Han, 2015, Chem. Commun., 51, 7008, 10.1039/C5CC00536A

Das, 2013, Proc. Natl. Acad. Sci. U. S. A., 110, 16716, 10.1073/pnas.1316755110

Han, 2012, Science, 338, 1321, 10.1126/science.1227775

Xu, 2015, Chem. – Eur. J., 21, 4571, 10.1002/chem.201406642

Das, 2015, ACS Catal., 5, 1397, 10.1021/acscatal.5b00045

Wang, 2015, Nanoscale, 7, 5767, 10.1039/C4NR07343F

Peng, 2015, Chem. Commun., 51, 12556, 10.1039/C5CC04739K

Jang, 2008, Int. J. Hydrogen Energy, 53, 5975, 10.1016/j.ijhydene.2008.07.105

Fujii, 1998, J. Mol. Catal. A: Chem., 129, 61, 10.1016/S1381-1169(97)00132-5

Jang, 2007, J. Photochem. Photobiol., A, 188, 112, 10.1016/j.jphotochem.2006.11.027

Jang, 2007, Int. J. Hydrogen Energy, 32, 4786, 10.1016/j.ijhydene.2007.06.026

Jang, 2006, Chem. Phys. Lett., 425, 278, 10.1016/j.cplett.2006.05.031

Jang, 2008, J. Phys. Chem. C, 112, 17200, 10.1021/jp804699c

Zhang, 2008, Mater. Lett., 62, 3846, 10.1016/j.matlet.2008.04.084

Li, 2010, Int. J. Hydrogen Energy, 35, 7073, 10.1016/j.ijhydene.2010.01.008

Park, 2008, J. Mater. Chem., 18, 2379, 10.1039/b718759a

Qi, 2011, Phys. Chem. Chem. Phys., 13, 8915, 10.1039/c1cp20079h

Daskalaki, 2010, Environ. Sci. Technol., 44, 7200, 10.1021/es9038962

He, 2012, Superlattices Microstruct., 51, 799, 10.1016/j.spmi.2012.03.026

Parayil, 2013, Int. J. Hydrogen Energy, 38, 2656, 10.1016/j.ijhydene.2012.12.042

Cui, 2013, Int. J. Hydrogen Energy, 38, 9065, 10.1016/j.ijhydene.2013.05.062

Khatamian, 2014, Int. J. Energy Res., 38, 1712, 10.1002/er.3186

Fang, 2013, ACS Appl. Mater. Interfaces, 5, 8088, 10.1021/am4021654

Kim, 2011, Adv. Funct. Mater., 21, 3111, 10.1002/adfm.201100453

Jing, 2007, J. Phys. Chem. C, 111, 13437, 10.1021/jp071700u

Qian, 2011, J. Mater. Chem., 21, 4945, 10.1039/c0jm03508d

Hou, 2012, J. Mater. Chem., 22, 7291, 10.1039/c2jm15791h

Yuan, 2014, Energy Environ. Sci., 7, 3934, 10.1039/C4EE02914C

Maeda, 2013, ACS Catal., 3, 1486, 10.1021/cs4002089

Zhou, 2014, Adv. Mater., 26, 4920, 10.1002/adma.201400288

Tada, 2006, Nat. Mater., 5, 782, 10.1038/nmat1734

Ding, 2013, Int. J. Hydrogen Energy, 38, 8244, 10.1016/j.ijhydene.2013.04.093

Zhu, 2009, Appl. Catal., B, 90, 463, 10.1016/j.apcatb.2009.04.006

Ma, 2015, Angew. Chem., Int. Ed., 54, 11490, 10.1002/anie.201504155

Zhang, 2014, ACS Catal., 4, 3724, 10.1021/cs500794j

Wang, 2009, Chem. Commun., 3452, 10.1039/b904668b

Wang, 2012, Adv. Energy Mater., 2, 42, 10.1002/aenm.201100528

Yun, 2011, ACS Nano, 5, 4084, 10.1021/nn2006738

Yu, 2013, J. Mater. Chem. A, 1, 2773, 10.1039/c3ta01476b

Peng, 2011, Energy Fuels, 25, 2203, 10.1021/ef200369z

Kim, 2011, Energy Environ. Sci., 4, 685, 10.1039/C0EE00330A

Yu, 2012, Nanoscale, 4, 2670, 10.1039/c2nr30129f

Wang, 2013, Dalton Trans., 42, 9976, 10.1039/c3dt50379h

Khan, 2013, Appl. Catal., B, 142–143, 647, 10.1016/j.apcatb.2013.05.075

Wang, 2013, Int. J. Hydrogen Energy, 38, 13091, 10.1016/j.ijhydene.2013.03.016

Yao, 2014, Int. J. Hydrogen Energy, 39, 15380, 10.1016/j.ijhydene.2014.07.164

Li, 2011, J. Am. Chem. Soc., 133, 10878, 10.1021/ja2025454

Peng, 2012, J. Phys. Chem. C, 116, 22720, 10.1021/jp306947d

Zeng, 2011, Phys. Chem. Chem. Phys., 13, 21496, 10.1039/c1cp22059d

Ye, 2012, Catal. Sci. Technol., 2, 969, 10.1039/c2cy20027a

Chang, 2014, ACS Nano, 8, 7078, 10.1021/nn5019945

Khan, 2012, RSC Adv., 2, 12122, 10.1039/c2ra21596a

Wang, 2014, Chem. Commun., 50, 3460, 10.1039/c4cc00044g

Hou, 2012, J. Mater. Chem., 22, 7291, 10.1039/c2jm15791h

Hou, 2013, Phys. Chem. Chem. Phys., 15, 15660, 10.1039/c3cp51857d

Zhang, 2012, Nano Lett., 12, 4584, 10.1021/nl301831h

Jia, 2011, J. Phys. Chem. C, 115, 11466, 10.1021/jp2023617

Lv, 2012, J. Mater. Chem., 22, 1539, 10.1039/C1JM14502A

Zhang, 2013, Int. J. Hydrogen Energy, 38, 7241, 10.1016/j.ijhydene.2013.04.027

Ye, 2012, Catal. Sci. Technol., 2, 969, 10.1039/c2cy20027a

Hong, 2015, Int. J. Hydrogen Energy, 40, 7045, 10.1016/j.ijhydene.2015.04.005

Ge, 2012, J. Phys. Chem. C, 116, 13708, 10.1021/jp3041692

Cao, 2013, Int. J. Hydrogen Energy, 38, 1258, 10.1016/j.ijhydene.2012.10.116

Zhang, 2013, ACS Appl. Mater. Interfaces, 5, 10317, 10.1021/am403327g

Li, 2015, Appl. Catal., B, 168–169, 465, 10.1016/j.apcatb.2015.01.012

Jiang, 2014, Appl. Surf. Sci., 295, 164, 10.1016/j.apsusc.2014.01.022

Yu, 2015, Appl. Surf. Sci., 358, 385, 10.1016/j.apsusc.2015.06.074

Yuan, 2015, J. Mater. Chem. A, 3, 18244, 10.1039/C5TA04573H

Wang, 2013, Chem. Soc. Rev., 42, 8134, 10.1039/c3cs60088b

Yan, 2015, Chem. Soc. Rev., 44, 3295, 10.1039/C4CS00492B

Yang, 2015, Chem. Rev., 115, 5159, 10.1021/cr5006217

Cao, 2014, J. Phys. Chem. Lett., 5, 2101, 10.1021/jz500546b