Spatzal, 2014, Science, 345, 1620, 10.1126/science.1256679
Yandulov, 2003, Science, 301, 76, 10.1126/science.1085326
McEnaney, 2017, Energy Environ. Sci., 10, 1621, 10.1039/C7EE01126A
Milton, 2016, Energy Environ. Sci., 9, 2550, 10.1039/C6EE01432A
Licht, 2014, Science, 345, 637, 10.1126/science.1254234
Coric, 2015, Nature, 526, 96, 10.1038/nature15246
Kitano, 2012, Nat. Chem., 4, 934, 10.1038/nchem.1476
Oshikiri, 2016, Angew. Chem., Int. Ed., 55, 3942, 10.1002/anie.201511189
van der Ham, 2014, Chem. Soc. Rev., 43, 5183, 10.1039/C4CS00085D
Falcaro, 2016, Nat. Mater., 16, 342, 10.1038/nmat4815
Ritter, 2008, Chem. Eng. News, 86, 53, 10.1021/cen-v086n030.p053
Yin, 2016, J. Am. Chem. Soc., 138, 14546, 10.1021/jacs.6b09351
Danyal, 2015, Biochemistry, 54, 2456, 10.1021/acs.biochem.5b00140
Kitano, 2015, Nat. Commun., 6, 6731, 10.1038/ncomms7731
van Kessel, 2015, Nature, 528, 555, 10.1038/nature16459
Banerjee, 2015, J. Am. Chem. Soc., 137, 2030, 10.1021/ja512491v
Li, 2015, J. Am. Chem. Soc., 137, 6393, 10.1021/jacs.5b03105
Bao, 2017, Adv. Mater., 29, 1604799, 10.1002/adma.201604799
Sun, 2017, Energy Environ. Sci., 10, 987, 10.1039/C6EE03563A
Renner, 2015, Electrochem. Soc. Interface, 24, 51, 10.1149/2.F04152if
Giddey, 2013, Int. J. Hydrogen Energy, 38, 14576, 10.1016/j.ijhydene.2013.09.054
Shipman, 2016, Catal. Today, 286, 57, 10.1016/j.cattod.2016.05.008
Service, 2014, Science, 345, 610, 10.1126/science.345.6197.610
Jia, 2014, Chem. Soc. Rev., 43, 547, 10.1039/C3CS60206K
Zheng, 2017, J. Am. Chem. Soc., 139, 3336, 10.1021/jacs.6b13100
Zhu, 2017, Acc. Chem. Res., 50, 915, 10.1021/acs.accounts.6b00635
Hu, 2017, Energy Environ. Sci., 10, 593, 10.1039/C6EE03629E
Ran, 2015, Energy Environ. Sci., 8, 3708, 10.1039/C5EE02650D
Ran, 2017, Angew. Chem., Int. Ed., 56, 10373, 10.1002/anie.201703827
Yue, 2016, Sci. Rep., 6, 30992, 10.1038/srep30992
Duman, 2016, J. Am. Chem. Soc., 138, 14856, 10.1021/jacs.6b09789
Lashgari, 2017, Appl. Catal., A, 529, 91, 10.1016/j.apcata.2016.10.017
Skulason, 2012, Phys. Chem. Chem. Phys., 14, 1235, 10.1039/C1CP22271F
Brown, 2016, Science, 352, 448, 10.1126/science.aaf2091
Zhu, 2013, Nat. Mater., 12, 836, 10.1038/nmat3696
Ali, 2016, Nat. Commun., 7, 11335, 10.1038/ncomms11335
Montoya, 2015, ChemSusChem, 8, 2180, 10.1002/cssc.201500322
Garagounis, 2014, Front. Energy Res., 2, 1, 10.3389/fenrg.2014.00001
Ito, 2005, J. Nucl. Energy, 344, 128
Kyriakou, 2016, Catal. Today, 286, 2, 10.1016/j.cattod.2016.06.014
Rebreyend, 2015, Angew. Chem., Int. Ed., 54, 42, 10.1002/anie.201409727
Li, 2017, Acc. Chem. Res., 50, 112, 10.1021/acs.accounts.6b00523
Abghoui, 2015, Phys. Chem. Chem. Phys., 17, 4909, 10.1039/C4CP04838E
Hoffman, 2014, Chem. Rev., 114, 4041, 10.1021/cr400641x
Huang, 2011, Angew. Chem., Int. Ed., 50, 3053, 10.1002/anie.201004638
Xu, 2016, Angew. Chem., Int. Ed., 55, 5277, 10.1002/anie.201600687
Cheng, 2013, Angew. Chem., Int. Ed., 52, 2474, 10.1002/anie.201208582
Ran, 2014, Chem. Soc. Rev., 43, 7787, 10.1039/C3CS60425J
Ma, 2017, Energy Environ. Sci., 10, 788, 10.1039/C6EE03768B
Zheng, 2012, Energy Environ. Sci., 5, 6717, 10.1039/c2ee03479d
Ran, 2017, Nat. Commun., 8, 13907, 10.1038/ncomms13907
Khan, 1988, Angew. Chem., Int. Ed. Engl., 27, 923, 10.1002/anie.198809231
Sun, 2017, J. Mater. Chem. A, 5, 201, 10.1039/C6TA09275F
Hirakawa, 2017, J. Am. Chem. Soc., 139, 10929, 10.1021/jacs.7b06634
Taqui Khan, 1992, J. Photochem. Photobiol., A, 67, 349, 10.1016/1010-6030(92)87009-X
Lan, 2013, Sci. Rep., 3, 1145, 10.1038/srep01145
Kordali, 2000, Chem. Commun., 1673, 10.1039/b004885m
Kim, 2016, J. Electrochem. Soc., 163, F1523, 10.1149/2.0741614jes
Tsuneto, 1994, J. Electroanal. Chem., 367, 183, 10.1016/0022-0728(93)03025-K
Wang, 2009, Acta Chim. Sin., 52, 1171
H. Xu , T.McCallum and S. S.Kocha , Meeting Abstracts , 2015, MA2015-02, p. 969
Furuya, 1990, J. Electroanal. Chem. Interfacial Electrochem., 291, 269, 10.1016/0022-0728(90)87195-P
Chen, 2017, Angew. Chem., Int. Ed., 56, 2699, 10.1002/anie.201609533
Köleli, 2006, Appl. Catal., B, 62, 306, 10.1016/j.apcatb.2005.08.006
Furuya, 1989, J. Electroanal. Chem. Interfacial Electrochem., 263, 171, 10.1016/0022-0728(89)80134-2
Kugler, 2015, Phys. Chem. Chem. Phys., 17, 3768, 10.1039/C4CP05501B
Kim, 2016, J. Electrochem. Soc., 163, F610, 10.1149/2.0231607jes
Sclafani, 1983, J. Electrochem. Soc., 130, 734, 10.1149/1.2119794
Köleli, 2010, J. Electroanal. Chem., 638, 119, 10.1016/j.jelechem.2009.10.010
Sorokin, 2013, Chem. Rev., 113, 8152, 10.1021/cr4000072
Furuya, 1989, J. Electroanal. Chem. Interfacial Electrochem., 272, 263, 10.1016/0022-0728(89)87086-X
Roy, 2016, Sci. Rep., 6, 38010, 10.1038/srep38010
Hsu, 2014, Mater. Sci. Semicond., 25, 2, 10.1016/j.mssp.2014.02.005
Oh, 2012, Nat. Nanotechnol., 7, 743, 10.1038/nnano.2012.166
Guo, 2017, Angew. Chem., Int. Ed., 56, 8539, 10.1002/anie.201701531
Li, 2017, Energy Environ. Sci., 10, 1751, 10.1039/C7EE00573C
Guan, 2016, Energy Environ. Sci., 9, 3092, 10.1039/C6EE02171A
Zheng, 2016, J. Am. Chem. Soc., 138, 16174, 10.1021/jacs.6b11291
Suen, 2017, Chem. Soc. Rev., 46, 337, 10.1039/C6CS00328A
Jung, 2016, Energy Environ. Sci., 9, 176, 10.1039/C5EE03124A
Jiao, 2016, Nat. Energy, 1, 16130, 10.1038/nenergy.2016.130
Chai, 2017, Energy Environ. Sci., 10, 1186, 10.1039/C6EE03446B
Hou, 2017, Energy Environ. Sci., 10, 1770, 10.1039/C7EE01553D
Shao, 2016, Chem. Rev., 116, 3594, 10.1021/acs.chemrev.5b00462
Chung, 2017, Science, 357, 479, 10.1126/science.aan2255