Rational connectedness and boundedness of Fano manifolds
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] F. Campana, Un theoreme definitude pur les varietes de Fano suffisamment unireglees, preprint, Univ. Nancy, 1991.
[2] F. Campana, Connexite rationnelle des varietes de Fano, Ann. Sci. Ecole Norm. Sup., to appear.
[3] A. Grothendieck et al., SGA I: Revetements tales et groupe fondemental, Lecture Notes in Math., Vol. 224, Springer, Berlin, 1971.
[5] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, Proc. Sympos. Algebraic Geometry, Sendai 1985, Advanced Studies Pure Math., Vol. 10, North-Holland, Amsterdam, and Kinokuniya, Tokyo, 1987.
[6] J. Kollar and T. Matsusaka, Riemann-Roch type inequalities, Geometry and number theory (J.-P. Serre & G. Shimura, eds.), Johns Hopkins Univ. Press, Baltimore, 1983, 229-252.
[7] J. Kollar, Y. Miyaoka and S. Mori, Rational curves on Fano varieties, Algebraic geometry, Trento '90, to appear.
[8] J. Kollar, Y. Miyaoka and S. Mori, Rationally connected varieties, J. Algebraic Geometry, to appear.
[9] Y. Miyaoka and S. Mori, A numerical criterion for uniruledness, Ann. of Math. (2) 124 (1986) 65-69.
[10] S. Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979) 593-606.
[11] S. Mori, Classification of higher-dimensional varieties, Proc. Sympos. Pure Math., Vol. 46, Amer. Math. Soc, 1987, 269-331.
[12] S. Mori and S. Mukai, Classification of Fano 3-folds with B2 >2, Manuscripta Math. 36 (1981) 147-162.
[13] M. Szurek and J. A. Wisinewski, Fano bundles over P 3 and Q3, Pacific J. Math. 141 (1990) 197-208.