Rational Design of Sulfur‐Doped Copper Catalysts for the Selective Electroreduction of Carbon Dioxide to Formate

Wiley - Tập 11 Số 1 - Trang 320-326 - 2018
Yun Huang1, Yilin Deng1, Albertus D. Handoko2, Gregory K. L. Goh2, Boon Siang Yeo1
1Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
2Institute of Materials Research and Engineering, Agency of Science, Technology and Research, A*STAR), 2 Fusionopolis Way, 08-03 Innovis, Singapore, 138634 Singapore

Tóm tắt

AbstractThe selective electroreduction of CO2 to formate (or formic acid) is of great interest in the field of renewable‐energy utilization. In this work, we designed a sulfur‐doped Cu2O‐derived Cu catalyst and showed that the presence of sulfur can tune the selectivity of Cu significantly from the production of various CO2 reduction products to almost exclusively formate. Sulfur is doped into the Cu catalysts by dipping the Cu substrates into ammonium polysulfide solutions. Catalyst films with the highest sulfur content of 2.7 at % showed the largest formate current density (j ) of −13.9 mA cm−2 at −0.9 V versus the reversible hydrogen electrode (RHE), which is approximately 46 times larger than that previously reported for Cu(110) surfaces. At −0.8 V versus RHE, the faradaic efficiency of formate was maintained at approximately 75 % for 12 h of continuous electrolysis. Through the analysis of the evolution of the j and j values with the sulfur content, we show that sulfur doping increases formate production and suppresses the hydrogen evolution reaction. Ag–S and Cu–Se catalysts did not exhibit any significant enhancement towards the reduction of CO2 to formate. This demonstrates clearly that sulfur and copper acted synergistically to promote the selective formation of formate. A hypothesis about the role of sulfur is proposed and discussed.

Từ khóa


Tài liệu tham khảo

10.1021/jz1012627

10.1016/j.ijhydene.2016.05.199

10.1002/anie.201406174

10.1002/ange.201406174

Reutemann W., 2000, Ullmann's Encyclopedia of Industrial Chemistry, 13

10.1038/nature19060

10.1021/ja511890h

10.1038/nature16455

10.1021/ja4113885

10.1016/j.nanoen.2016.11.004

10.1016/0013-4686(94)85172-7

10.1039/C6TA04874A

10.3866/PKU.WHXB201512101

10.1021/ja5031529

1985, Standard Potentials in Aqueous Solution

10.1039/B804323J

Nordberg G. F., 2014, Handbook on the Toxicology of Metals

2017, Mineral Commodity Summaries 2017

Hageluken C., 2006, Metall, 60, 31

10.1021/cs502128q

10.1021/acs.jpcc.6b07128

10.1021/acscatal.6b03147

10.1021/jacs.6b08534

10.1002/cssc.201501197

10.1038/nmat1752

10.1039/C5NR01378J

10.1016/S0039-6028(99)01191-7

10.1016/0301-7516(87)90020-2

10.1016/j.electacta.2014.06.138

10.1039/b201561g

10.1021/am505473d

10.1021/ic102593h

10.1021/acscatal.6b00205

10.1039/C4CP01520G

10.1002/anie.201301470

10.1002/ange.201301470

10.1021/acs.jpclett.5b00722

10.1002/ange.201700580

10.1021/ja3010978

10.1021/acscatal.5b00602

10.1007/978-0-387-49489-0_3

10.1021/acscentsci.6b00155

10.1021/acs.jpclett.5b01559

10.1039/c0ee00071j

10.1016/S0013-4686(03)00311-6

10.1021/jacs.5b06568

10.1021/ja503782w

10.1016/j.jelechem.2006.05.013

Kubiak G. D., 1985, J. Vac. Sci. Technol. A, 3, 1649, 10.1116/1.573030

10.1021/jz201461p

10.1021/acs.jpclett.6b01876