Rational Design of Halide Double Perovskites for Optoelectronic Applications

Joule - Tập 2 Số 9 - Trang 1662-1673 - 2018
Xingang Zhao1, Dongwen Yang1, Ji‐Chang Ren2, Yuanhui Sun1, Zewen Xiao3, Lijun Zhang1
1State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
2Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
3Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kojima, 2009, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r

Kim, 2012, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2, 591, 10.1038/srep00591

Saliba, 2016, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, 354, 206, 10.1126/science.aah5557

Saliba, 2016, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci., 9, 1989, 10.1039/C5EE03874J

McMeekin, 2016, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells, Science, 351, 151, 10.1126/science.aad5845

Shao, 2016, Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells, Nat. Energy, 1, 15001, 10.1038/nenergy.2015.1

Shin, 2017, Colloidally prepared La-Doped BaSnO3 electrodes for efficient, photostable perovskite solar cells, Science, 356, 167, 10.1126/science.aam6620

Lee, 2012, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643, 10.1126/science.1228604

Burschka, 2013, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316, 10.1038/nature12340

Liu, 2013, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501, 395, 10.1038/nature12509

Zhou, 2014, Interface engineering of highly efficient perovskite solar cells, Science, 345, 542, 10.1126/science.1254050

Jeon, 2014, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014

Jeon, 2015, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517, 476, 10.1038/nature14133

Yang, 2015, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348, 1234, 10.1126/science.aaa9272

Chen, 2015, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers, Science, 350, 944, 10.1126/science.aad1015

Xing, 2013, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science, 342, 344, 10.1126/science.1243167

Giorgi, 2013, Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis, J. Phys. Chem. Lett., 4, 4213, 10.1021/jz4023865

Frohna, 2018, Inversion symmetry and bulk rashba effect in methylammonium lead iodide perovskite single crystals, Nat. Commun., 9, 1829, 10.1038/s41467-018-04212-w

Stranks, 2013, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341, 10.1126/science.1243982

Wehrenfennig, 2014, High charge Carrier mobilities and lifetimes in organolead trihalide perovskites, Adv. Mater., 26, 1584, 10.1002/adma.201305172

Edri, 2014, Elucidating the charge Carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells, Nat. Commun., 5, 3461, 10.1038/ncomms4461

Miyata, 2015, Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites, Nat. Phys., 11, 582, 10.1038/nphys3357

Baumann, 2015, Identification of trap states in perovskite solar cells, J. Phys. Chem. Lett., 6, 2350, 10.1021/acs.jpclett.5b00953

Duan, 2015, The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics, Phys. Chem. Chem. Phys., 17, 112, 10.1039/C4CP04479G

Wang, 2016, Efficient perovskite solar cells by metal ion doping, Energy Environ. Sci., 9, 2892, 10.1039/C6EE01969B

Zhao, 2017, Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells, Nat. Energy, 2, 17018, 10.1038/nenergy.2017.18

Shan, 2017, High performance metal halide perovskite light-emitting diode: from material design to device optimization, Small, 13, 1701770, 10.1002/smll.201701770

Zhou, 2018, Photodetectors based on organic-inorganic hybrid lead halide perovskites, Adv. Sci. (Weinh)., 5, 1700256, 10.1002/advs.201700256

Qin, 2017, Recent progress in stability of perovskite solar cells, J. Semicond., 38, 011002, 10.1088/1674-4926/38/1/011002

Xiao, 2017, Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality, Mater. Horiz., 4, 206, 10.1039/C6MH00519E

Zhang, 2018, Recent progress in lead-free perovskite (-like) solar cells, Mater. Today Energy, 8, 157, 10.1016/j.mtener.2018.03.001

Jodlowski, 2018, Alternative perovskites for photovoltaics, Adv. Energy Mater., 10.1002/aenm.201703120

Liang, 2018, Lead-free hybrid perovskite absorbers for viable application: can we eat the cake and have it too?, Adv. Sci.(Weinh), 5, 1700331, 10.1002/advs.201700331

Abate, 2017, Perovskite solar cells go lead free, Joule, 1, 659, 10.1016/j.joule.2017.09.007

Xu, 2018, Perovskite solar absorbers: materials by design, Small Methods, 2, 1700316, 10.1002/smtd.201700316

Xiao, 2017, Progress in theoretical study of metal halide perovskite solar cell materials, Adv. Energy Mater., 7, 1701136, 10.1002/aenm.201701136

Yin, 2014, Unique properties of halide perovskites as possible origins of the superior solar cell performance, Adv. Mater., 26, 4653, 10.1002/adma.201306281

Saparov, 2015, Thin-film preparation and characterization of Cs3Sb2I9: a lead-free layered perovskite semiconductor, Chem. Mater., 27, 5622, 10.1021/acs.chemmater.5b01989

Ghosh, 2017, Poor photovoltaic performance of Cs3Bi2I9: an insight through first-principles calculations, J. Phys. Chem. C, 121, 17062, 10.1021/acs.jpcc.7b03501

Zhao, 2017, Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation, J. Am. Chem. Soc., 139, 2630, 10.1021/jacs.6b09645

Zhao, 2017, Cu-In halide perovskite solar absorbers, J. Am. Chem. Soc., 139, 6718, 10.1021/jacs.7b02120

Shin, 2017, Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials, Adv. Energy Mater., 7, 1602366, 10.1002/aenm.201602366

Li, 2018, Cation substitution in earth-abundant kesterite photovoltaic materials, Adv. Sci. (Weinh), 5, 1700744, 10.1002/advs.201700744

Xiao, 2017, Distant-atom mutation for better earth-abundant light absorbers: a case study of Cu2BaSnSe4, ACS Energy Lett., 2, 29, 10.1021/acsenergylett.6b00577

Nakajima, 2017, Discovery of Pb-Free perovskite solar cells via high-throughput simulation on the K computer, J. Phys. Chem. Lett., 8, 4826, 10.1021/acs.jpclett.7b02203

Volonakis, 2016, Lead-free halide double perovskites via heterovalent substitution of noble metals, J. Phys. Chem. Lett., 7, 1254, 10.1021/acs.jpclett.6b00376

Giustino, 2016, Toward lead-free perovskite solar cells, ACS Energy Lett., 1, 1233, 10.1021/acsenergylett.6b00499

Flerov, 1998, Phase transitions in elpasolites (ordered perovskites), Mater. Sci. Eng. R Rep., 24, 81, 10.1016/S0927-796X(98)00015-1

Slavney, 2016, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications, J. Am. Chem. Soc., 138, 2138, 10.1021/jacs.5b13294

Zhou, 2018, Exploring the transposition effects on the electronic and optical properties of Cs2AgSbCl6 via a combined computational-experimental approach, J. Mater. Chem. A, 6, 2346, 10.1039/C7TA10062K

Creutz, 2018, Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: synthesis and anion exchange to access new materials, Nano Lett., 18, 1118, 10.1021/acs.nanolett.7b04659

McClure, 2016, Cs2AgBiX6 (X= Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors, Chem. Mater., 28, 1348, 10.1021/acs.chemmater.5b04231

Wei, 2016, The synthesis, structure and electronic properties of a lead-free hybrid Inorganic-organic double perovskite (MA)2KBiCl6 (MA = methylammonium), Mater. Horiz., 3, 328, 10.1039/C6MH00053C

Wei, 2017, Synthesis and properties of a lead-free hybrid double perovskite: (CH3NH3)2AgBiBr6, Chem. Mater., 29, 1089, 10.1021/acs.chemmater.6b03944

Deng, 2016, Exploring the properties of lead-free hybrid double perovskites using a combined computational-experimental approach, J. Mater. Chem. A, 4, 12025, 10.1039/C6TA05817E

Deng, 2017, Synthesis and characterization of the rare-earth hybrid double perovskites: (CH3NH3)2KGdCl6 and (CH3NH3)2KYCl6, J. Phys. Chem. Lett., 8, 5015, 10.1021/acs.jpclett.7b02322

Volonakis, 2017, Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap, J. Phys. Chem. Lett., 8, 772, 10.1021/acs.jpclett.6b02682

Tran, 2017, Designing indirect-direct bandgap transitions in double perovskites, Mater. Horiz., 4, 688, 10.1039/C7MH00239D

Deng, 2017, Synthesis of Cs2AgSbCl6 and improved optoelectronic properties of Cs2AgSbCl6/TiO2 heterostructure driven by the interface effect for lead-free double perovskites solar cells, Appl. Phys. Lett., 111, 151602, 10.1063/1.4999192

Xiao, 2018, Bandgap optimization of perovskite semiconductors for photovoltaic applications, Chemistry, 24, 2305, 10.1002/chem.201705031

Filip, 2016, Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment, J. Phys. Chem. Lett., 7, 2579, 10.1021/acs.jpclett.6b01041

Savory, 2016, Can Pb-free halide double perovskites support high-efficiency solar cells?, ACS Energy Lett., 1, 949, 10.1021/acsenergylett.6b00471

Xiao, 2016, Thermodynamic stability and defect chemistry of bismuth-based lead-free double perovskites, ChemSusChem, 9, 2628, 10.1002/cssc.201600771

Meng, 2017, Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites, J. Phys. Chem. Lett., 8, 2999, 10.1021/acs.jpclett.7b01042

Luo, 2018, Cs2AgInCl6 double perovskite single crystals: parity forbidden transitions and their application for sensitive and fast UV photodetectors, ACS Photonics, 5, 398, 10.1021/acsphotonics.7b00837

Zhou, 2017, Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6, J. Mater. Chem. A, 5, 15031, 10.1039/C7TA04690A

Lee, 2014, Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor, J. Am. Chem. Soc., 136, 15379, 10.1021/ja508464w

Sakai, 2017, Solution-processed cesium hexabromopalladate(IV), Cs2PdBr6, for optoelectronic applications, J. Am. Chem. Soc., 139, 6030, 10.1021/jacs.6b13258

Ju, 2018, Earth-abundant nontoxic titanium(IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications, ACS Energy Lett., 3, 297, 10.1021/acsenergylett.7b01167

Xiao, 2015, Ligand-hole in [SnI6] unit and origin of band gap in photovoltaic perovskite variant Cs2SnI6, Bull. Chem. Soc. Jpn., 88, 1250, 10.1246/bcsj.20150110

Saparov, 2016, Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SnI6, Chem. Mater., 28, 2315, 10.1021/acs.chemmater.6b00433

Maughan, 2018, Anharmonicity and octahedral tilting in hybrid vacancy-ordered double perovskites, Chem. Mater., 30, 472, 10.1021/acs.chemmater.7b04516

Maughan, 2018, Tolerance factor and cooperative tilting effects in vacancy-ordered double perovskite halides, Chem. Mater., 30, 3909, 10.1021/acs.chemmater.8b01549

Maughan, 2016, Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6, J. Am. Chem. Soc., 138, 8453, 10.1021/jacs.6b03207

Xiao, 2015, Intrinsic defects in photovoltaic perovskite variant Cs2SnI6, Phys. Chem. Chem. Phys., 17, 18900, 10.1039/C5CP03102H

Xiao, 2017, Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = halogen) double perovskites: a combined density functional theory and experimental study, J. Am. Chem. Soc., 139, 6054, 10.1021/jacs.7b02227

Xiao, 2017, Chemical origin of the stability difference between copper(I)- and silver(I)-based halide double perovskites, Angew. Chem. Int. Ed., 56, 12107, 10.1002/anie.201705113

Filip, 2018, Phase diagrams and stability of lead-free halide double perovskites Cs2BB′X6: B = Sb and Bi, B′ = Cu, Ag, and Au, and X = Cl, Br, and I, J. Phys. Chem. C, 122, 158, 10.1021/acs.jpcc.7b10370

Volonakis, 2017, Route to stable lead-free double perovskites with the electronic structure of CH3NH3PbI3: a case for mixed-cation [Cs/CH3NH3/CH(NH2)2]2InBiBr6, J. Phys. Chem. Lett., 8, 3917, 10.1021/acs.jpclett.7b01584

Hull, 1994, High-pressure polymorphism of the copper(I) halides: a neutron-diffraction study to ∼10 GPa, Phys. Rev. B, 50, 5868, 10.1103/PhysRevB.50.5868

Greul, 2017, Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications, J. Mater. Chem. A, 5, 19972, 10.1039/C7TA06816F

Ning, 2018, Long electron-hole diffusion length in high-quality lead-free double perovskite films, Adv. Mater., 30, 1706246, 10.1002/adma.201706246

Gao, 2018, High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiency, ChemPhysChem, 19, 1, 10.1002/cphc.201800346

Qiu, 2016, Lead-free mesoscopic Cs2SnI6 perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers, Phys. Status Solidi Rapid Res. Lett., 10, 587, 10.1002/pssr.201600166

Qiu, 2017, From unstable CsSnI3 to air-stable Cs2SnI6: a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient, Sol. Energy Mater. Sol. Cells, 159, 227, 10.1016/j.solmat.2016.09.022

Lee, 2017, Solution processing of air-stable molecular semiconducting iodosalts, Cs2SnI6-x Brx, for potential solar cell applications, Sustain. Energy Fuels, 1, 710, 10.1039/C7SE00100B

Chen, 2018, Cesium titanium(IV) bromide thin films based stable lead-free perovskite solar cells, Joule, 2, 558, 10.1016/j.joule.2018.01.009

Pan, 2017, Cs2AgBiBr6 single-crystal x-ray detectors with a low detection limit, Nat. Photonics, 11, 726, 10.1038/s41566-017-0012-4

K, 2018, Synthesis and luminescence of Mn-Doped Cs2AgInCl6 double perovskites, Chem. Commun. (Camb)., 54, 5205, 10.1039/C8CC01982G

Deng, 2017, Tailoring photoluminescence stability in double perovskite red phosphors A2BAlF6:Mn4+ (A = Rb, Cs; B = K, Rb) via neighboring-cation modulation, J. Mater. Chem. C, 5, 12422, 10.1039/C7TC04411A

Tan, 2018, Highly efficient blue-emitting bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping, Adv. Funct. Mater., 10.1002/adfm.201801131

Aull, 1986, Impact of ion-host interactions on the 5d-to-4f spectra of lanthanide rare-earth-metal ions. II. The Ce-doped elpasolites, Phys. Rev. B, 34, 6647, 10.1103/PhysRevB.34.6647

da Fonseca, 2000, Vibrational analysis of the elpasolites Cs2NaAlF6 and Cs2NaGaF6 doped with Cr3+ ions by fluorescence spectroscopy, J. Fluoresc., 10, 375, 10.1023/A:1009430530367

Zhou, 2018, Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals, Small, 14, 1703762, 10.1002/smll.201703762

Connor, 2018, Layered halide double perovskites: dimensional reduction of Cs2AgBiBr6, J. Am. Chem. Soc., 140, 5235, 10.1021/jacs.8b01543

Xiao, 2018, Roles of pseudo-closed s2 orbitals for different intrinsic hole generation between Tl-Bi and In-Bi bromide double perovskites, J. Phys. Chem. Lett., 9, 258, 10.1021/acs.jpclett.7b02949

Xu, 2017, Intrinsic defect physics in indium-based lead-free halide double perovskites, J. Phys. Chem. Lett., 8, 4391, 10.1021/acs.jpclett.7b02008

Slavney, 2017, Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption, J. Am. Chem. Soc., 139, 5015, 10.1021/jacs.7b01629

Du, 2017, Bandgap engineering of lead-free double perovskite Cs2AgBiBr6 through trivalent metal alloying, Angew. Chem. Int. Ed., 56, 8158, 10.1002/anie.201703970

Li, 2017, High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite, Angew. Chem. Int. Ed., 56, 15969, 10.1002/anie.201708684

Yang, 2018, Band structure engineering of Cs2AgBiBr6 perovskite through order-disordered transition: a first-principle study, J. Phys. Chem. Lett., 9, 31, 10.1021/acs.jpclett.7b02992

Zhang, 2017, Manipulation of cation combination and configuration of halide double perovskites for solar cell absorbers, J. Mater. Chem. A, 6, 1809, 10.1039/C7TA09713A

Yang, 2018, Lead-free silver-bismuth halide double perovskite nanocrystals, Angew. Chem. Int. Ed., 130, 5457, 10.1002/ange.201800660

Bekenstein, 2018, The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions, Nano Lett., 18, 3502, 10.1021/acs.nanolett.8b00560