Rational Design of Halide Double Perovskites for Optoelectronic Applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kojima, 2009, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r
Kim, 2012, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2, 591, 10.1038/srep00591
Saliba, 2016, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, 354, 206, 10.1126/science.aah5557
Saliba, 2016, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci., 9, 1989, 10.1039/C5EE03874J
McMeekin, 2016, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells, Science, 351, 151, 10.1126/science.aad5845
Shao, 2016, Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells, Nat. Energy, 1, 15001, 10.1038/nenergy.2015.1
Shin, 2017, Colloidally prepared La-Doped BaSnO3 electrodes for efficient, photostable perovskite solar cells, Science, 356, 167, 10.1126/science.aam6620
Lee, 2012, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643, 10.1126/science.1228604
Burschka, 2013, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316, 10.1038/nature12340
Liu, 2013, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501, 395, 10.1038/nature12509
Zhou, 2014, Interface engineering of highly efficient perovskite solar cells, Science, 345, 542, 10.1126/science.1254050
Jeon, 2014, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014
Jeon, 2015, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517, 476, 10.1038/nature14133
Yang, 2015, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348, 1234, 10.1126/science.aaa9272
Chen, 2015, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers, Science, 350, 944, 10.1126/science.aad1015
Xing, 2013, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science, 342, 344, 10.1126/science.1243167
Giorgi, 2013, Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis, J. Phys. Chem. Lett., 4, 4213, 10.1021/jz4023865
Frohna, 2018, Inversion symmetry and bulk rashba effect in methylammonium lead iodide perovskite single crystals, Nat. Commun., 9, 1829, 10.1038/s41467-018-04212-w
Stranks, 2013, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341, 10.1126/science.1243982
Wehrenfennig, 2014, High charge Carrier mobilities and lifetimes in organolead trihalide perovskites, Adv. Mater., 26, 1584, 10.1002/adma.201305172
Edri, 2014, Elucidating the charge Carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells, Nat. Commun., 5, 3461, 10.1038/ncomms4461
Miyata, 2015, Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites, Nat. Phys., 11, 582, 10.1038/nphys3357
Baumann, 2015, Identification of trap states in perovskite solar cells, J. Phys. Chem. Lett., 6, 2350, 10.1021/acs.jpclett.5b00953
Duan, 2015, The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics, Phys. Chem. Chem. Phys., 17, 112, 10.1039/C4CP04479G
Wang, 2016, Efficient perovskite solar cells by metal ion doping, Energy Environ. Sci., 9, 2892, 10.1039/C6EE01969B
Zhao, 2017, Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells, Nat. Energy, 2, 17018, 10.1038/nenergy.2017.18
Shan, 2017, High performance metal halide perovskite light-emitting diode: from material design to device optimization, Small, 13, 1701770, 10.1002/smll.201701770
Zhou, 2018, Photodetectors based on organic-inorganic hybrid lead halide perovskites, Adv. Sci. (Weinh)., 5, 1700256, 10.1002/advs.201700256
Qin, 2017, Recent progress in stability of perovskite solar cells, J. Semicond., 38, 011002, 10.1088/1674-4926/38/1/011002
Xiao, 2017, Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality, Mater. Horiz., 4, 206, 10.1039/C6MH00519E
Zhang, 2018, Recent progress in lead-free perovskite (-like) solar cells, Mater. Today Energy, 8, 157, 10.1016/j.mtener.2018.03.001
Jodlowski, 2018, Alternative perovskites for photovoltaics, Adv. Energy Mater., 10.1002/aenm.201703120
Liang, 2018, Lead-free hybrid perovskite absorbers for viable application: can we eat the cake and have it too?, Adv. Sci.(Weinh), 5, 1700331, 10.1002/advs.201700331
Xu, 2018, Perovskite solar absorbers: materials by design, Small Methods, 2, 1700316, 10.1002/smtd.201700316
Xiao, 2017, Progress in theoretical study of metal halide perovskite solar cell materials, Adv. Energy Mater., 7, 1701136, 10.1002/aenm.201701136
Yin, 2014, Unique properties of halide perovskites as possible origins of the superior solar cell performance, Adv. Mater., 26, 4653, 10.1002/adma.201306281
Saparov, 2015, Thin-film preparation and characterization of Cs3Sb2I9: a lead-free layered perovskite semiconductor, Chem. Mater., 27, 5622, 10.1021/acs.chemmater.5b01989
Ghosh, 2017, Poor photovoltaic performance of Cs3Bi2I9: an insight through first-principles calculations, J. Phys. Chem. C, 121, 17062, 10.1021/acs.jpcc.7b03501
Zhao, 2017, Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation, J. Am. Chem. Soc., 139, 2630, 10.1021/jacs.6b09645
Zhao, 2017, Cu-In halide perovskite solar absorbers, J. Am. Chem. Soc., 139, 6718, 10.1021/jacs.7b02120
Shin, 2017, Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials, Adv. Energy Mater., 7, 1602366, 10.1002/aenm.201602366
Li, 2018, Cation substitution in earth-abundant kesterite photovoltaic materials, Adv. Sci. (Weinh), 5, 1700744, 10.1002/advs.201700744
Xiao, 2017, Distant-atom mutation for better earth-abundant light absorbers: a case study of Cu2BaSnSe4, ACS Energy Lett., 2, 29, 10.1021/acsenergylett.6b00577
Nakajima, 2017, Discovery of Pb-Free perovskite solar cells via high-throughput simulation on the K computer, J. Phys. Chem. Lett., 8, 4826, 10.1021/acs.jpclett.7b02203
Volonakis, 2016, Lead-free halide double perovskites via heterovalent substitution of noble metals, J. Phys. Chem. Lett., 7, 1254, 10.1021/acs.jpclett.6b00376
Giustino, 2016, Toward lead-free perovskite solar cells, ACS Energy Lett., 1, 1233, 10.1021/acsenergylett.6b00499
Flerov, 1998, Phase transitions in elpasolites (ordered perovskites), Mater. Sci. Eng. R Rep., 24, 81, 10.1016/S0927-796X(98)00015-1
Slavney, 2016, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications, J. Am. Chem. Soc., 138, 2138, 10.1021/jacs.5b13294
Zhou, 2018, Exploring the transposition effects on the electronic and optical properties of Cs2AgSbCl6 via a combined computational-experimental approach, J. Mater. Chem. A, 6, 2346, 10.1039/C7TA10062K
Creutz, 2018, Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: synthesis and anion exchange to access new materials, Nano Lett., 18, 1118, 10.1021/acs.nanolett.7b04659
McClure, 2016, Cs2AgBiX6 (X= Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors, Chem. Mater., 28, 1348, 10.1021/acs.chemmater.5b04231
Wei, 2016, The synthesis, structure and electronic properties of a lead-free hybrid Inorganic-organic double perovskite (MA)2KBiCl6 (MA = methylammonium), Mater. Horiz., 3, 328, 10.1039/C6MH00053C
Wei, 2017, Synthesis and properties of a lead-free hybrid double perovskite: (CH3NH3)2AgBiBr6, Chem. Mater., 29, 1089, 10.1021/acs.chemmater.6b03944
Deng, 2016, Exploring the properties of lead-free hybrid double perovskites using a combined computational-experimental approach, J. Mater. Chem. A, 4, 12025, 10.1039/C6TA05817E
Deng, 2017, Synthesis and characterization of the rare-earth hybrid double perovskites: (CH3NH3)2KGdCl6 and (CH3NH3)2KYCl6, J. Phys. Chem. Lett., 8, 5015, 10.1021/acs.jpclett.7b02322
Volonakis, 2017, Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap, J. Phys. Chem. Lett., 8, 772, 10.1021/acs.jpclett.6b02682
Tran, 2017, Designing indirect-direct bandgap transitions in double perovskites, Mater. Horiz., 4, 688, 10.1039/C7MH00239D
Deng, 2017, Synthesis of Cs2AgSbCl6 and improved optoelectronic properties of Cs2AgSbCl6/TiO2 heterostructure driven by the interface effect for lead-free double perovskites solar cells, Appl. Phys. Lett., 111, 151602, 10.1063/1.4999192
Xiao, 2018, Bandgap optimization of perovskite semiconductors for photovoltaic applications, Chemistry, 24, 2305, 10.1002/chem.201705031
Filip, 2016, Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment, J. Phys. Chem. Lett., 7, 2579, 10.1021/acs.jpclett.6b01041
Savory, 2016, Can Pb-free halide double perovskites support high-efficiency solar cells?, ACS Energy Lett., 1, 949, 10.1021/acsenergylett.6b00471
Xiao, 2016, Thermodynamic stability and defect chemistry of bismuth-based lead-free double perovskites, ChemSusChem, 9, 2628, 10.1002/cssc.201600771
Meng, 2017, Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites, J. Phys. Chem. Lett., 8, 2999, 10.1021/acs.jpclett.7b01042
Luo, 2018, Cs2AgInCl6 double perovskite single crystals: parity forbidden transitions and their application for sensitive and fast UV photodetectors, ACS Photonics, 5, 398, 10.1021/acsphotonics.7b00837
Zhou, 2017, Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6, J. Mater. Chem. A, 5, 15031, 10.1039/C7TA04690A
Lee, 2014, Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor, J. Am. Chem. Soc., 136, 15379, 10.1021/ja508464w
Sakai, 2017, Solution-processed cesium hexabromopalladate(IV), Cs2PdBr6, for optoelectronic applications, J. Am. Chem. Soc., 139, 6030, 10.1021/jacs.6b13258
Ju, 2018, Earth-abundant nontoxic titanium(IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications, ACS Energy Lett., 3, 297, 10.1021/acsenergylett.7b01167
Xiao, 2015, Ligand-hole in [SnI6] unit and origin of band gap in photovoltaic perovskite variant Cs2SnI6, Bull. Chem. Soc. Jpn., 88, 1250, 10.1246/bcsj.20150110
Saparov, 2016, Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SnI6, Chem. Mater., 28, 2315, 10.1021/acs.chemmater.6b00433
Maughan, 2018, Anharmonicity and octahedral tilting in hybrid vacancy-ordered double perovskites, Chem. Mater., 30, 472, 10.1021/acs.chemmater.7b04516
Maughan, 2018, Tolerance factor and cooperative tilting effects in vacancy-ordered double perovskite halides, Chem. Mater., 30, 3909, 10.1021/acs.chemmater.8b01549
Maughan, 2016, Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6, J. Am. Chem. Soc., 138, 8453, 10.1021/jacs.6b03207
Xiao, 2015, Intrinsic defects in photovoltaic perovskite variant Cs2SnI6, Phys. Chem. Chem. Phys., 17, 18900, 10.1039/C5CP03102H
Xiao, 2017, Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = halogen) double perovskites: a combined density functional theory and experimental study, J. Am. Chem. Soc., 139, 6054, 10.1021/jacs.7b02227
Xiao, 2017, Chemical origin of the stability difference between copper(I)- and silver(I)-based halide double perovskites, Angew. Chem. Int. Ed., 56, 12107, 10.1002/anie.201705113
Filip, 2018, Phase diagrams and stability of lead-free halide double perovskites Cs2BB′X6: B = Sb and Bi, B′ = Cu, Ag, and Au, and X = Cl, Br, and I, J. Phys. Chem. C, 122, 158, 10.1021/acs.jpcc.7b10370
Volonakis, 2017, Route to stable lead-free double perovskites with the electronic structure of CH3NH3PbI3: a case for mixed-cation [Cs/CH3NH3/CH(NH2)2]2InBiBr6, J. Phys. Chem. Lett., 8, 3917, 10.1021/acs.jpclett.7b01584
Hull, 1994, High-pressure polymorphism of the copper(I) halides: a neutron-diffraction study to ∼10 GPa, Phys. Rev. B, 50, 5868, 10.1103/PhysRevB.50.5868
Greul, 2017, Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications, J. Mater. Chem. A, 5, 19972, 10.1039/C7TA06816F
Ning, 2018, Long electron-hole diffusion length in high-quality lead-free double perovskite films, Adv. Mater., 30, 1706246, 10.1002/adma.201706246
Gao, 2018, High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiency, ChemPhysChem, 19, 1, 10.1002/cphc.201800346
Qiu, 2016, Lead-free mesoscopic Cs2SnI6 perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers, Phys. Status Solidi Rapid Res. Lett., 10, 587, 10.1002/pssr.201600166
Qiu, 2017, From unstable CsSnI3 to air-stable Cs2SnI6: a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient, Sol. Energy Mater. Sol. Cells, 159, 227, 10.1016/j.solmat.2016.09.022
Lee, 2017, Solution processing of air-stable molecular semiconducting iodosalts, Cs2SnI6-x Brx, for potential solar cell applications, Sustain. Energy Fuels, 1, 710, 10.1039/C7SE00100B
Chen, 2018, Cesium titanium(IV) bromide thin films based stable lead-free perovskite solar cells, Joule, 2, 558, 10.1016/j.joule.2018.01.009
Pan, 2017, Cs2AgBiBr6 single-crystal x-ray detectors with a low detection limit, Nat. Photonics, 11, 726, 10.1038/s41566-017-0012-4
K, 2018, Synthesis and luminescence of Mn-Doped Cs2AgInCl6 double perovskites, Chem. Commun. (Camb)., 54, 5205, 10.1039/C8CC01982G
Deng, 2017, Tailoring photoluminescence stability in double perovskite red phosphors A2BAlF6:Mn4+ (A = Rb, Cs; B = K, Rb) via neighboring-cation modulation, J. Mater. Chem. C, 5, 12422, 10.1039/C7TC04411A
Tan, 2018, Highly efficient blue-emitting bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping, Adv. Funct. Mater., 10.1002/adfm.201801131
Aull, 1986, Impact of ion-host interactions on the 5d-to-4f spectra of lanthanide rare-earth-metal ions. II. The Ce-doped elpasolites, Phys. Rev. B, 34, 6647, 10.1103/PhysRevB.34.6647
da Fonseca, 2000, Vibrational analysis of the elpasolites Cs2NaAlF6 and Cs2NaGaF6 doped with Cr3+ ions by fluorescence spectroscopy, J. Fluoresc., 10, 375, 10.1023/A:1009430530367
Zhou, 2018, Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals, Small, 14, 1703762, 10.1002/smll.201703762
Connor, 2018, Layered halide double perovskites: dimensional reduction of Cs2AgBiBr6, J. Am. Chem. Soc., 140, 5235, 10.1021/jacs.8b01543
Xiao, 2018, Roles of pseudo-closed s2 orbitals for different intrinsic hole generation between Tl-Bi and In-Bi bromide double perovskites, J. Phys. Chem. Lett., 9, 258, 10.1021/acs.jpclett.7b02949
Xu, 2017, Intrinsic defect physics in indium-based lead-free halide double perovskites, J. Phys. Chem. Lett., 8, 4391, 10.1021/acs.jpclett.7b02008
Slavney, 2017, Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption, J. Am. Chem. Soc., 139, 5015, 10.1021/jacs.7b01629
Du, 2017, Bandgap engineering of lead-free double perovskite Cs2AgBiBr6 through trivalent metal alloying, Angew. Chem. Int. Ed., 56, 8158, 10.1002/anie.201703970
Li, 2017, High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite, Angew. Chem. Int. Ed., 56, 15969, 10.1002/anie.201708684
Yang, 2018, Band structure engineering of Cs2AgBiBr6 perovskite through order-disordered transition: a first-principle study, J. Phys. Chem. Lett., 9, 31, 10.1021/acs.jpclett.7b02992
Zhang, 2017, Manipulation of cation combination and configuration of halide double perovskites for solar cell absorbers, J. Mater. Chem. A, 6, 1809, 10.1039/C7TA09713A
Yang, 2018, Lead-free silver-bismuth halide double perovskite nanocrystals, Angew. Chem. Int. Ed., 130, 5457, 10.1002/ange.201800660