Ratiometric electrochemiluminescence sensing platform for sensitive glucose detection based on in situ generation and conversion of coreactants

Elsevier BV - Tập 251 - Trang 256-263 - 2017
Jingjing Jiang1, Dong Chen1, Xuezhong Du1
1Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Liu, 2015, Recent advances in electrochemiluminescence, Chem. Soc. Rev., 44, 3117, 10.1039/C5CS00086F

Miao, 2008, Electrogenerated chemiluminescence and its biorelated applications, Chem. Rev., 108, 2506, 10.1021/cr068083a

Bard, 2004

Hesari, 2016, Review–Electrogenerated chemiluminescence: light years ahead, J. Electrochem. Soc., 163, H3116, 10.1149/2.0161604jes

Jie, 2011, Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe-ZnS-quantum dot nanoclusters, Anal. Chem., 83, 3873, 10.1021/ac200383z

Wu, 2014, Reduced graphene oxide upconversion nanoparticle hybrid for electrochemiluminescent sensing of a prognostic indicator in early-stage cancer, Small, 10, 330, 10.1002/smll.201301273

Zanarini, 2011, Green and blue electrochemically generated chemiluminescence from click chemistry-customizable iridium complexes, Chem. Eur. J., 17, 4640, 10.1002/chem.201002956

Ballesta-Claver, 2013, Disposable biosensor based on cathodic electrochemiluminescence of tris(2,2-bipyridine)ruthenium(II) for uric acid determination, Anal, Chim. Acta, 770, 153, 10.1016/j.aca.2013.01.045

Chen, 2014, Gold nanoparticle-graphite-like C3N4 nanosheet nanohybrids used for electrochemiluminescent immunosensor, Anal. Chem., 86, 4188, 10.1021/ac403635f

Jie, 2011, Magnetic electrochemiluminescent Fe3O4/CdSe-CdS nanoparticle/polyelectrolyte nanocomposite for highly efficient immunosensing of a cancer biomarker, Chem. Eur. J., 17, 641, 10.1002/chem.201001128

Wang, 2014, Synthesis of multi-fullerenes encapsulated palladium nanocage, and its application in electrochemiluminescence immunosensors for the detection of streptococcus suis serotype 2, Small, 10, 1857, 10.1002/smll.201303594

Xu, 2011, Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection, Anal. Chem., 83, 3817, 10.1021/ac200237j

Ding, 2013, TiO2 nanocrystals electrochemiluminescence quenching by biological enlarged nanogold particles and its application for biosensing, Biosens. Bioelectron., 39, 342, 10.1016/j.bios.2012.07.065

Zhang, 2014, Electrochemiluminescence signal amplification combined with a conformation-switched hairpin DNA probe for determining the methylation level and position in the Hsp53 tumor suppressor gene, Chem. Commun., 50, 2932, 10.1039/C3CC49719D

Zhang, 2013, Electrochemiluminescence ratiometry: a new approach to DNA biosensing, Anal. Chem., 85, 5321, 10.1021/ac400992u

Liu, 2014, Design of ratiometric emission probe with visible light excitation for determination of Ca2+ in living cells, Anal. Chem., 86, 8025, 10.1021/ac5022002

Royzen, 2005, Ratiometric displacement approach to Cu(II) sensing by fluorescence, J. Am. Chem. Soc., 127, 1612, 10.1021/ja0431051

Zhang, 2014, Signal-on dual-potential electrochemiluminescence based on luminol–gold bifunctional nanoparticles for telomerase detection, Anal. Chem., 86, 3834, 10.1021/ac403960g

Cheng, 2014, Design and biosensing of Mg2+-dependent DNAzyme-triggered ratiometric electrochemiluminescence, Anal. Chem., 86, 5158, 10.1021/ac500965p

Zhao, 2015, A dual-potential electrochemiluminescence ratiometric approach based on graphene quantum dots and luminol for highly sensitive detection of protein kinase activity, Chem. Commun., 51, 12669, 10.1039/C5CC03678J

Ding, 2012, Single-walled carbon nanotubes noncovalently functionalized by ruthenium(II) complex tagged with pyrene: electrochemical and electrogenerated chemiluminescence properties, Chem. Eur. J., 18, 11564, 10.1002/chem.201201543

Zamolo, 2012, Highly sensitive electrochemiluminescent nanobiosensor for the detection of palytoxin, ACS Nano, 6, 7989, 10.1021/nn302573c

Gu, 2015, Stabilized, superparamagnetic functionalized graphene/Fe3O4@Au nanocomposites for a magnetically-controlled solid-state electrochemiluminescence biosensing application, Anal. Chem., 87, 1876, 10.1021/ac503966u

Liu, 2014, Remarkable increase in luminol electrochemiluminescence by sequential electroreduction and electrooxidation, Chem. Commun., 50, 14662, 10.1039/C4CC06633B

Forster, 2009, Electrogenerated chemiluminescence, Annu. Rev. Anal. Chem., 2, 359, 10.1146/annurev-anchem-060908-155305

Zhang, 2014, Dual-peak electrogenerated chemiluminescence of carbon dots for iron ions detection, Anal. Chem., 86, 5620, 10.1021/ac5011734

Yuan, 2013, Bioluminescence as a light source for photosynthesis, Chem. Commun., 49, 10685, 10.1039/c3cc45264f

Abucayon, 2014, Investigating catalase activity through hydrogen peroxide decomposition by bacteria biofilms in real time using scanning electrochemical microscopy, Anal. Chem., 86, 498, 10.1021/ac402475m

Yeung, 2013, A thermally-stable enzyme detection assay that amplifies signal autonomously in water without assistance from biological reagents, Chem. Commun., 49, 394, 10.1039/C2CC36861G

Irkham, 2016, Co-reactant-on-demand ECL: electrogenerated chemiluminescence by the in situ production of S2O82− at boron-doped diamond electrodes, J. Am. Chem. Soc., 138, 15636, 10.1021/jacs.6b09020

Xu, 2017, C3N4 nanosheet modified microwell array with enhanced electrochemiluminescence for total analysis of cholesterol at single cells, Anal. Chem., 89, 2216, 10.1021/acs.analchem.6b04635

Yang, 2013, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light, Adv. Mater., 25, 2452, 10.1002/adma.201204453

Zhao, 2013, Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging, J. Am. Chem. Soc., 135, 18, 10.1021/ja308249k

Wu, 2016, An in-electrode-type immunosensing strategy for the detection of squamous cell carcinoma antigen based on electrochemiluminescent AuNPs/g-C3N4 nanocomposites, Talanta, 160, 247, 10.1016/j.talanta.2016.07.023

Chen, 2015, Molecularly imprinted ultrathin graphitic carbon nitride nanosheets-based electrochemiluminescence sensing probe for sensitive detection of perfluorooctanoic acid, Anal. Chim. Acta, 896, 68, 10.1016/j.aca.2015.09.022

Cheng, 2012, Electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its application in selective sensing Cu2+, Anal. Chem., 84, 4754, 10.1021/ac300205w

Cheng, 2013, Anodic electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its sensing for rutin, Anal. Chem., 85, 2601, 10.1021/ac303263n

Wang, 2009, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8, 76, 10.1038/nmat2317

Datta, 2010, Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction, Angew. Chem. Int. Ed., 49, 5961, 10.1002/anie.201001699

Zhou, 2007, Probing the responsive behavior of polyelectrolyte brushes using electrochemical impedance spectroscopy, Anal. Chem., 79, 176, 10.1021/ac061332a

Chen, 2013, Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity, Nanoscale, 5, 225, 10.1039/C2NR32248J

Zhong, 2014, A novel strategy for synthesis of hollow gold nanosphere and its application in electrogenerated chemiluminescence glucose biosensor, Talanta, 128, 9, 10.1016/j.talanta.2014.03.071

Luo, 2015, Encapsulation of hemin in metal organic frameworks for catalyzing the chemiluminescence reaction of the H2O2-luminol system and detecting glucose in the neutral condition, ACS Appl. Mater. Interfaces, 7, 11322, 10.1021/acsami.5b01706

Kong, 2013, A transition metal carbonyl probe for use in a highly specific and sensitive sers-based assay for glucose, J. Am. Chem. Soc., 135, 18028, 10.1021/ja409230g

Bi, 2015, Facile and sensitive glucose sandwich assay using in situ-generated Raman reporters, Anal. Chem., 87, 2016, 10.1021/ac504653x