Rates of convex approximation in non-hilbert spaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. R. Barron (1991):Approximation and estimation bounds for artificial neural networks. In: Proc. Fourth Annual Workshop on Computational Learning Theory. Morgan Kaufmann, pp. 243–249.
A. R. Barron (1992):Neural net approximation. In: Proc. of the Seventh Yale Workshop on Adaptive and Learning Systems. pp. 69–72.
C. Bessaga, A. Pelczynski (1958):A generalization of results of R. C. James concerning absolute bases in Banach spaces. Studia Math.,17:151–164.
C. Darken, M. Donahue, L. Gurvits, E. Sontag (1993):Rate of approximation results motivated by robust neural network learning. In: Proc. of the Sixth Annual ACM Conference on Computational Learning Theory. New York: The Association for Computing Machinery. pp. 303–309.
R. Deville, G. Godefroy, V. Zizler (1993): Smoothness and Renormings in Banach Spaces. New York: Wiley.
J. Dieudonné (1960): Foundations of Modern Analysis. New York: Academic Press.
T. Figiel, G. Pisier (1974):Séries aléatoires dans les espaces uniformément convexes ou uniformément lisses. C. R. Acad. Sci. Paris,279:611–614.
W. T. Gowers (Preprint):A Banach space not containing c 0, l1, or a reflexive subspace.
S. J. Hanson, D. J. Burr (1988):Minkowski-r back-propagation: learning in connectionist models with non-Euclidean error signals. In: Neural Information Processing Systems. New York: American Institute of Physics, p. 348.
L. K. Jones (1992):A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Ann. Statist.,20:608–613.
S. Kakutani (1938):Weak convergence in uniformly convex spaces. Tôhoku Math. J.,45:188–193.
M. Leshno, V. Lin, A. Pinkus, S. Schocken (1992):Multilayer feedforward networks with a non-polynomial activation function can approximate any function. Preprint. Hebrew University.
J. Lindenstrauss (1963):On the modulus of smoothness and divergent series in Banach spaces. Michigan Math. J.,10:241–252.
J. Lindenstrauss, L. Tzafriri (1979): Classical Banach Spaces II: Function Spaces. Berlin: Springer-Verlag.
W. J. Rey (1983): Introduction to Robust and Quasi-Robust Statistical Methods. Berlin: Springer-Verlag.
H. Rosenthal (1974):A characterization of Banach spaces containing l l. Proc. Nat. Acad. Sci. (USA),71:2411–2413.
H. Rosenthal (1994):A subsequence principle characterizing Banach spaces containing c 0. Bull. Amer. Math. Soc.,30:227–233.
E. D. Sontag (1992):Feedback stabilization using two-hidden-layer nets. IEEE Trans. Neural Networks,3:981–990.
K. R. Stromberg (1981): An Introduction to Classical Real Analysis. New York: Wadsworth.