Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tốc độ tiến hóa phân tử của động vật linh trưởng
Tóm tắt
Bài đánh giá này xem xét lịch sử và trạng thái hiện tại của vấn đề gây tranh cãi về sự biến đổi trong tỷ lệ tích lũy các thay thế đột biến trong phát sinh loài của con người và các loài linh trưởng khác. Các lập luận ủng hộ và phản bác cho giả thuyết về tốc độ tiến hóa phân tử của con người và loài vượn dần giảm sút được thảo luận. Dữ liệu về protein và DNA (hạt nhân và ti thể) xác nhận giả thuyết này. Kết luận được rút ra là tỷ lệ tổng thể của sự tích lũy đột biến được xác định bởi một số yếu tố tương tác. Yếu tố chính trong hầu hết các trường hợp (bao gồm cả loài người) là thời gian sinh sản, có liên quan chặt chẽ với số lần phân chia tế bào sinh dục. Đồng thời, tỷ lệ cố định các thay thế không đồng nghĩa cũng bị ảnh hưởng bởi các hình thức tuyển chọn khác nhau.
Từ khóa
#tiến hóa phân tử #động vật linh trưởng #đột biến #thay thế không đồng nghĩa #thời gian sinh sảnTài liệu tham khảo
Zuckerkandl, E. and Pauling, L., Molecular Diseases, Evolution, and Gene Diversity, in Gorizonty biokhimii (Frontiers in Biochemistry), Moscow: Mir, 1964, pp. 148-173.
Margoliash, E., Primary Structure and Evolution of Cytochrome C, Proc. Natl. Acad. Sci. USA, 1963, vol. 50, pp. 672-679.
Zuckerkandl, E. and Pauling, L., Evolutionary Divergence and Convergence in Proteins, Evolving Genes and Proteins, New York: Academic, 1965, pp. 97-166.
Tetushkin, E.Ya., Evolutionary Molecular Clock and the Neutral Theory of Molecular Evolution: To the 30th Anniversary of the Hypothesis of Molecular Clock, Usp. Sovrem. Biol., 1991, vol. 111, no. 6, pp. 812-827.
Goodman, M., Evolution of the Immunologic Species Specificity of Human Serum Proteins, Hum. Biol., 1962, vol. 34, pp. 104-150.
Goodman, M., Immunochemistry of the Primates and Primate Evolution, Ann. N. Y. Acad. Sci., 1962, vol. 102, no. 2, pp. 219-234.
Goodman, M., The Role of Immunochemical Differences in the Phyletic Development of Human Behavior, Hum. Biol., 1961, vol. 33, pp. 131-162.
Goodman, M., Man's Place in the Phylogeny of the Primates as Reflected in Serum Proteins, in Classification and Human Evolution, Chicago: Aldine, 1963, pp. 204-234.
Goodman, M., Serological Analysis of the Systematics of Recent Hominoids, Hum. Biol., 1963, vol. 35, pp. 377-406.
Sarich, V.M. and Wilson, A.C., Rates of Albumin Evolution in Primates, Proc. Natl. Acad. Sci. USA, 1967, vol. 58, pp. 142-148.
Sarich, V.M., Primate Systematics with Special Reference to Old World Monkeys: A Protein Perspective, Old World Monkeys: Evolution, Systematics, and Behavior, New York: Academic, 1970, pp. 175-226.
Bauer, K., An Immunological Time Scale for Primate Evolution Consistent with Fossil Evidence, Humangenetik, 1970, vol. 10, no. 4, pp. 344-350.
Lovejoy, C.O., Burstein, A.H., and Heiple, K.G., Primate Phylogeny and Immunological Distance, Science, 1972, vol. 176, pp. 803-805.
Sarich, V.M. and Wilson, A.C., Immunological Time Scale for Hominid Evolution, Science, 1967, vol. 158, pp. 1200-1203.
Wilson, A.C. and Sarich, V.M., A Molecular Time Scale for Human Evolution, Proc. Natl. Acad. Sci. USA, 1969, vol. 63, pp. 1088-1093.
Sarich, V.M., The Origin of the Hominids: An Immunological Approach, in Perspectives on Human Evolution, New York: Holt, Rinehart and Winston, 1968, pp. 102-112.
Read, D.W. and Lestrel, P.E., Hominid Phylogeny and Immunology: A Critical Appraisal, Science, 1970, vol. 168, pp. 578-580.
Wilson, A.C., Kaplan, N.O., Levine, L., et al., Evolution of Lactic Dehydrogenases, Fed. Proc., 1964, vol. 23, pp. 1258-1264.
Sarich, V.M. and Cronin, J.E., Molecular Systematics of the Primates, in Molecular Anthropology, New York: Plenum, 1976, pp. 141-170.
Dene, H.T., Goodman, M., and Prychodko, W., Immunodiffusion Evidence on the Phylogeny of the Primates, in Molecular Anthropology, New York: Plenum, 1976, pp. 171-195.
Kolchanov, N.A., Solov'ev, V.V., and Zharkikh, A.A., Context-Based Methods for Theoretical Analysis of Genetic Macromolecules (DNA, RNA, and Proteins), Itogi Nauki Tekhn.: Mol. Biol.: Genome Structure and Evolution, 1985, vol. 21, pp. 81-116.
Kimura, M., The Rate of Molecular Evolution Considered from the Standpoint of Population Genetics, Proc. Natl. Acad. Sci. USA, 1969, vol. 63, pp. 1181-1188.
Kimura, M. and Ohta, T., On the Rate of Molecular Evolution, J. Mol. Evol., 1971, vol. 1, pp. 1-17.
Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambridge Univ. Press, 1983.
Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambridge Univ. Press, 1983.
Langley, C.H. and Fitch, W.M., An Examination of the Constancy of the Rate of Molecular Evolution, J. Mol. Evol., 1974, vol. 3, pp. 161-177.
Goodman, M., The Chronicle of Primate Phylogeny Contained in Proteins, Symp. Zool. Soc. London, 1973, no. 33, pp. 339-375.
Goodman, M., Biochemical Evidence on Hominid Phylogeny, Annu. Rev. Anthropol., 1974, vol. 3, pp. 203-228.
Fitch, W.M. and Margoliash, E., Construction of Phylogenetic Trees, Science, 1967, vol. 155, pp. 279-284.
Cavalli-Sforza, L.L. and Edwards, A.W.F., Phylogenetic Analysis: Models and Estimation Procedures, Evolution, 1967, vol. 21, pp. 550-570.
Moore, G.W., Goodman, M., and Barnabas, J., An Iterative Solution from the Standpoint of the Additive Hypothesis to the Dendrogram Problem Posed by Molecular Data Sets, J. Theor. Biol., 1973, vol. 38, pp. 423-457.
Goodman, M. and Lasker, G.W., Molecular Evidence as to Man's Place in Nature, in Primate Functional Morphology and Evolution, the Hague: Mouton, 1975, pp. 71-101.
Goodman, M., Decoding the Pattern of Protein Evolution, Prog. Biophys. Mol. Biol., 1981, vol. 37, pp. 105-164.
Goodman, M., Biomolecular Evidence on Human Origins from the Standpoint of Darwinian Theory, Hum. Biol., 1982, vol. 54, pp. 247-264.
Goodman, M., Romero-Herrera, A.E., Dene, H., et al., Amino Acid Sequence Evidence on the Phylogeny of Primates and Other Eutherians, in Macromolecular Sequences in Systematic and Evolutionary Biology, New York: Plenum, 1982, pp. 115-191.
Goodman, M., Braunitzer, G., Stangl, A., and Schrank, B., Evidence on Human Origins from Haemoglobins of African Apes, Nature, 1983, vol. 303, pp. 546-548.
Scott, A.F., Heath, P., Trusko, S., et al., The Sequence of Gorilla Fetal Globin Genes: Evidence for Multiple Gene Conversions in Human Evolution, Mol. Biol. Evol., 1984, vol. 1, pp. 371-389.
Slightom, J.L., Chang, L.-Y.E., Koop, B.F., and Goodman, M., Chimpanzee Fetal G??and A??Globin Gene Nucleotide Sequences Provide Further Evidence of Gene Conversion in Homininae Evolution, Mol. Biol. Evol., 1985, vol. 2, pp. 370-389.
Tetushkin, E.Ya., Molecular Paleogenetics of Primates, Genetika (Moscow), 1997, vol. 33, no. 3, pp. 293-307.
Li, W.-H., Luo, C.-C., and Wu, C.-I., Evolution of DNA Sequences, in Molecular Evolutionary Genetics, New York: Plenum, 1985, pp. 1-94.
Li, W.-H. and Tanimura, M., The Molecular Clock Runs More Slowly in Man Than in Apes and Monkeys, Nature, 1987, vol. 326, pp. 93-96.
Li, W.-H., Tanimura, M., and Sharp, P.M., An Evaluation of the Molecular Clock Hypothesis Using Mammalian DNA Sequences, J. Mol. Evol., 1987, vol. 25, pp. 330-342.
Li, W.-H., Wu, C.-I., and Luo, C.-C., A New Method for Estimating Synonymous and Nonsynonymous Rates of Nucleotide Substitution Considering the Relative Likelihood of Nucleotide and Codon Changes, Mol. Biol. Evol., 1985, vol. 2, pp. 150-174.
Chang, L.-Y.E. and Slightom, J.L., Isolation and Nucleotide Sequence Analysis of the ?-Type Globin Pseudogene from Human, Gorilla and Chimpanzee, Mol. Biol. Evol., 1984, vol. 180, pp. 767-783.
Goodman, M., Koop, B.F., Czelusniak, J., et al., The ?-Globin Gene: Its Long Evolutionary History in the ?-Globin Gene Family of Mammals, J. Mol. Biol., 1984, vol. 180, pp. 803-823.
Goodman, M., Molecular Evidence on the Ape Subfamily Homininae, in Evolutionary Perspectives and the New Genetics, New York: Liss, 1986, pp. 121-132.
Koop, B.F., Goodman, M., Xu, P., et al., Primate ?-Globin DNA Sequences and Man's Place among the Great Apes, Nature, 1986, vol. 319, pp. 234-238.
Miyamoto, M.M., Slightom, J.L., and Goodman, M., Phylogenetic Relations of Humans and African Apes from DNA Sequences in the ??-Globin Region, Science, 1987, vol. 238, pp. 369-373.
Bailey, W.J., Fitch, D.H.A., Tagle, D.A., et al., Molecular Evolution of the ??-Globin Gene Locus: Gibbon Phylogeny and the Hominoid Slowdown, Mol. Biol. Evol., 1991, vol. 8, pp. 155-184.
Hasegawa, M., Kishino, H., and Yano, T.-A., Man's Place in Hominoidea as Inferred from Molecular Clocks of DNA, J. Mol. Evol., 1987, vol. 26, pp. 132-147.
Hasegawa, M., Kishino, H., and Yano, T.-A., Estimation of Branching Dates among Primates by Molecular Clocks of Nuclear DNA Which Slowed Down in Hominoidea, J. Hum. Evol., 1989, vol. 18, pp. 461-476.
Hasegawa, M., Phylogeny and Molecular Evolution in Primates, Jpn. J. Genet., 1990, vol. 65, pp. 243-266.
Easteal, S., The Relative Rate of DNA Evolution in Primates, Mol. Biol. Evol., 1991, vol. 8, pp. 115-127.
Herbert, G. and Easteal, S., Relative Rates of Nuclear DNA Evolution in Human and Old World Monkey Lineages, Mol. Biol. Evol., 1996, vol. 13, pp. 1054-1057.
Li, W.-H., Ellsworth, D.L., Krushkal, J., et al., Rates of Nucleotide Substitution in Primates and Rodents and the Generation-Time Effect Hypothesis, Mol. Phyl. Evol., 1996, vol. 5, pp. 182-187.
Gibbons, A., When It Comes to Evolution, Humans Are in the Slow Class, Science, 1995, vol. 267, pp. 1907-1908.
Sibley, C.G. and Ahlquist, J.E., The Phylogeny of the Hominoid Primates, as Indicated by DNA-DNA Hybridization, J. Mol. Evol., 1984, vol. 20, pp. 2-15.
Benveniste, R.E., The Contributions of Retroviruses to the Study of Mammalian Evolution, in Molecular Evolutionary Genetics, New York: Plenum, 1985, pp. 359-417.
Britten, R.J., Rates of DNA Sequence Evolution Differ between Taxonomic Groups, Science, 1986, vol. 231, pp. 1393-1398.
Sibley, C.G. and Ahlquist, J.E., DNA Hybridization Evidence of Hominoid Phylogeny: Results from an Expanded Data Set, J. Mol. Evol., 1987, vol. 26, pp. 99-121.
Caccone, PA. and Powell, J.R., DNA Divergence among Hominoids, Evolution, 1989, vol. 43, pp. 925-942.
Goodman, M., Tagle, D.A., Fitch, D.H.A., et al., Primate Evolution at the DNA Level and a Classification of Hominoids, J. Mol. Evol., 1990, vol. 30, pp. 260-266.
Bromham, L., Penny, D., Rambaut, A., and Hendy, M.D., The Power of Relative Rate Tests Depends on the Data, J. Mol. Evol., 2000, vol. 50, pp. 296-301.
Wu, C.-I. and Li, W.-H., Evidence for Higher Rates of Nucleotide Substitution in Rodents Than in Man, Proc. Natl. Acad. Sci. USA, 1985, vol. 82, pp. 1741-1745.
Chen, F.-C. and Li, W.-H., Genomic Divergences between Humans and Other Hominoids and the Effective Population Size of the Common Ancestor of Humans and Chimpanzees, Am. J. Hum. Genet., 2001, vol. 68, pp. 444-456.
Li, W.-H., Molecular Evolution, Sunderland, Mass.: Sinauer, 1997.
Easteal, S., Collet, C.C., and Betty, D.J., The Mammalian Molecular Clock, Austin, Tex.: Springer-Verlag, 1995.
Brown, W.M., George, M., Jr., and Wilson, A.C., Rapid Evolution of Animal Mitochondrial DNA, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, pp. 1967-1971.
Brown, W.M., Prager, E.M., Wang, A., and Wilson, A.C., Mitochondrial DNA Sequences of Primates: Tempo and Mode of Evolution, J. Mol. Evol., 1982, vol. 18, pp. 225-239.
Hasegawa, M. and Yano, T.-A., Maximum Likelihood Method of Phylogenetic Inference from DNA Sequence Data, Bull. Biometric Soc. Jpn., 1984, no. 5, pp. 1-7.
Hasegawa, M., Yano, T.-A., and Kishino, H., A New Molecular Clock of Mitochondrial DNA and the Evolution of Hominoids, Proc. Jpn. Acad., Ser. B, 1984, vol. 60, no. 4, pp. 95-98.
Hasegawa, M., Kishino, H., and Yano, T.-A., Dating of the Human-Ape Splitting by a Molecular Clock of Mitochondrial DNA, J. Mol. Evol., 1985, vol. 22, pp. 160-174.
Hasegawa, M. and Kishino, H., Heterogeneity of Tempo and Mode of Mitochondrial DNA Evolution among Mammalian Orders, Jpn. J. Genet., 1989, vol. 64, pp. 243-258.
Kishino, H. and Hasegawa, M., Converting Distance to Time: An Application to Human Evolution, Methods Enzymol., 1990, vol. 183, pp. 550-570.
Hasegawa, M., Kishino, H., Hayasaka, K., and Horai, S., Mitochondrial DNA Evolution in Primates: Transition Rate Has Been Extremely Low in the Lemur, J. Mol. Evol., 1990, vol. 31, pp. 113-121.
Hayasaka, K., Gojobori, T., and Horai, S., Molecular Phylogeny and Evolution of Primate Mitochondrial DNA, Mol. Biol. Evol., 1988, vol. 5, pp. 626-644.
Grossman, L.I., Schmidt, T.R., Wildman, D.E., and Goodman, M., Molecular Evolution of Aerobic Energy Metabolism in Primates, Mol. Phylogenet. Evol., 2001, vol. 18, pp. 26-36.
Cann, R.L., Brown, W.M., and Wilson, A.C., Polymorphic Sites and the Mechanism of Evolution in Human Mitochondrial DNA, Genetics, 1984, vol. 106, pp. 479-499.
Arnason, U., Gullberg, A., Janke, A., and Xu, X., Pattern and Timing of Evolutionary Divergences among Hominoids Based on Analyses of Complete mtDNAs, J. Mol. Evol., 1996, vol. 43, pp. 650-661.
Andrews, T.D., Jermiin, L.S., and Easteal, S., Accelerated Evolution of Cytochrome b in Simian Primates: Adaptive Evolution in Concert with Other Mitochondrial Proteins?, J. Mol. Evol., 1998, vol. 47, pp. 249-257.
Andrews, T.D. and Easteal, S., Evolutionary Rate Acceleration of Cytochrome c Oxidase Subunit I in Simian Primates, J. Mol. Evol., 2000, vol. 50, pp. 562-568.
Wu, W., Goodman, M., Lomax, M.I., and Grossman, L.I., Molecular Evolution of Cytochrome c Oxidase Subunit IV: Evidence for Positive Selection in Simian Primates, J. Mol. Evol., 1997, vol. 44, pp. 477-491.
Kimura, M., Was Globin Evolution Very Rapid in Its Early Stages?: A Dubious Case against Rate-Constancy Hypothesis, J. Mol. Evol., 1981, vol. 17, pp. 110-113.
Kimura, M., Doubt about Studies of Globin Evolution Based on Maximum Parsimony Codons and the Augmentation Procedure, J. Mol. Evol., 1981, vol. 17, pp. 121-122.
Ratner, V.A., Zharkikh, A.A., Kolchanov, N.A., et al., Problems of the Theory of Molecular Evolution, Novosibirsk: Nauka, 1985.
Goodman, M., Porter, C.A., Czelusniak, J., et al., Toward a Phylogenetic Classification of Primates Based on DNA Evidence Complemented by Fossil Evidence, Mol. Phylogenet. Evol., 1998, vol. 9, pp. 585-598.
Page, S.L. and Goodman, M., Catarrhine Phylogeny: Noncoding DNA Evidence for a Diphyletic Origin of the Mangabeys and for a Human-Chimpanzee Clade, Mol. Phylogenet. Evol., 2001, vol. 18, pp. 14-25.
Goodman, M., Rates of Molecular Evolution: The Hominoid Slowdown, BioEssays, 1985, vol. 3, pp. 9-14.
Harris, S., Thackeray, J.R., Jeffreys, A.J., et al., Nucleotide Sequence Analysis of the Lemur ?-Globin Gene Family: Evidence for Major Rate Fluctuations in Globin Polypeptide Evolution, Mol. Biol. Evol., 1986, vol. 3, pp. 465-484.
Miyamoto, M.M., Koop, B.F., Slightom, J.L., et al., Molecular Systematics of Higher Primates: Genealogical Relations and Classification, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 7627-7631.
Goodman, M., Molecular Evolution of the Primates, Primatology Today, Amsterdam: Elsevier, 1991, pp. 11-18.
Fitch, D.H.A., Mainone, C., Slightom, J.L., and Goodman, M., The Spider Monkey ??-Globin Gene and Surrounding Sequences: Recent or Ancient Insertions of LINEs and SINEs?, Genomics, 1988, vol. 3, pp. 237-255.
Holmes, E.C., Pesole, G., and Saccone, C., Stochastic Models of Molecular Evolution and the Estimation of Phylogeny and Rates of Nucleotide Substitution in the Hominoid Primates, J. Hum. Evol., 1989, vol. 18, pp. 775-794.
Weiss, M.L., Nucleic Acid Evidence Bearing on Hominoid Relationships, Yearbook Phys. Anthropol., 1987, vol. 30, pp. 41-73.
Ingman, M., Kaessmann, H., Pääbo, S., and Gyllensten, U., Mitochondrial Genome Variation and the Origin of Modern Humans, Nature, 2000, vol. 408, pp. 708-713.
Kawamura, S., Tanabe, H., Watanabe, Y., et al., Evolutionary Rate of Immunoglobulin ??Noncoding Region Is Greater in Hominoids Than in Old World Monkeys, Mol. Biol. Evol., 1991, vol. 8, pp. 743-752.
Laursen, H.B., Jörgensen, A.L., Jones, C., and Bak, A.L., Higher Rate of Evolution of X Chromosome ?-Repeat DNA in Human Than in the Great Apes, EMBO J., 1992, vol. 11, pp. 2367-2372.
Shaw, J.-P., Marks, J., Shen, C.C., and Shen, C.-K.J., Anomalous and Selective DNA Mutations of the Old World Monkey ?-Globin Genes, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 1312-1316.
Tarling, D.H., The Geologic Evolution of South America with Special Reference to the Last 200 Million Years, in Evolutionary Biology of the New World Monkeys and Continental Drift, New York: Plenum, 1980, pp. 1-41.
Arnason, U., Gullberg, A., and Janke, A., Molecular Timing of Primate Divergences as Estimated by Two Nonprimate Calibration Points, J. Mol. Evol., 1998, vol. 47, pp. 718-727.
Cao, Y., Janke, A., Waddell, P.J., et al., Conflict among Individual Proteins in Resolving the Phylogeny of Eutherian Orders, J. Mol. Evol., 1998, vol. 47, pp. 307-322.
Catzeflis, F.M., Le rythme d'evolution de l'ADN nucleaire depend-il du temps de generation chez les mammiferes?, Coll. Nat. CNRS “Biologie des populations,” Lyon: Univ. Claude Bernard, 1987, pp. 63-68.
Catzeflis, F.M., Sheldon, F.H., Ahlquist, J.E., and Sibley, C.G., DNA-DNA Hybridization Evidence of the Rapid Rate of Muroid Rodent DNA Evolution, Mol. Biol. Evol., 1987, vol. 4, pp. 242-253.
Li, W.-H. and Wu, C.-I., Rates of Nucleotide Substitution Are Evidently Higher in Rodents Than in Man, Mol. Biol. Evol., 1987, vol. 4, pp. 74-77.
Li, W.-H., Gouy, M., Sharp, P.M., et al., Molecular Phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and Molecular Clocks, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 6703-6707.
Ohta, T., An Examination of the Generation-Time Effect on Molecular Evolution, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 10 676-10 680.
Ohta, T., Pattern of Nucleotide Substitutions in Growth Hormone-Prolactin Gene Family: A Paradigm for Evolution by Gene Duplication, Genetics, 1993, vol. 134, pp. 1271-1276.
Bromham, L., Rambaut, A., and Harvey, P.H., Determinants of Rate Variation in Mammalian DNA Sequence Evolution, J. Mol. Evol., 1996, vol. 43, pp. 610-621.
Moriyama, E.N., Higher Rates of Nucleotide Substitution in Drosophila Than in Mammals, Jpn. J. Genet., 1987, vol. 62, pp. 139-147.
Krajewski, C., Relative Rates of Single-Copy DNA Evolution in Cranes, Mol. Biol. Evol., 1990, vol. 7, pp. 65-73.
Weinreich, D.M., The Rates of Molecular Evolution in Rodent and Primate Mitochondrial DNA, J. Mol. Evol., 2001, vol. 52, pp. 40-50.
Fernando, P., Perender, M.E., Encalada, S.E., and Lande, R., Mitochondrial DNA Variation, Phylogeography and Population Structure of the Asian Elephant, Heredity, 2000, vol. 84, pp. 362-372.
Martin, A.P., Naylor, G.J.P., and Palumbi, S.R., Rates of Mitochondrial DNA in Sharks Are Slow Compared with Mammals, Nature, 1992, vol. 357, pp. 153-155.
Sarich, V.M. and Wilson, A.C., Generation Time and Genomic Evolution in Primates, Science, 1973, vol. 179, pp. 1144-1147.
Sarich, V.M. and Cronin, J.E., Generation Length and Rates of Hominoid Molecular Evolution, Nature, 1977, vol. 269, pp. 354-355.
Wilson, A.C., Carlson, S.S., and White, T.J., Biochemical Evolution, Annu. Rev. Biochem., 1977, vol. 46, pp. 573-639.
Wilson, A.C., Ochman, H., and Prager, E.M., Molecular Time Scale for Evolution, Trends Genet., 1987, vol. 3, pp. 241-247.
Bohossian, H.B., Skaletsky, H., and Page, D.C., Unexpectedly Similar Rates of Nucleotide Substitution Found in Male and Female Hominids, Nature, 2000, vol. 406, no. 6796, pp. 622-625.
Vogel, F., Kopun, M., and Rathenberg, R., Mutation and Molecular Evolution, in Molecular Anthropology, New York: Plenum, 1976, pp. 13-33.
Lewin, R., Molecular Clocks Run out of Time, New Sci., 1990, vol. 125, pp. 38-41.
Tice, R.R. and Setlow, R.B., DNA Repair and Replication in Aging Organisms and Cells, in Handbook of the Biology of Aging, Florence, Kentucky: Van Nostrand Rheinhold, 1985, pp. 173-224.
Koop, B.F., Tagle, D.A., Goodman, M., and Slightom, J.L., A Molecular View of Primate Phylogeny and Important Systematic and Evolutionary Questions, Mol. Biol. Evol., 1989, vol. 6, pp. 580-612.
Martin, A.P. and Palumbi, S.R., Body Size, Metabolic Rate, Generation Time, and the Molecular Clock, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 4087-4091.
Tajima, Y., Natural Mutagens, Comutagens, and Antimutagens, Genetika i blagosostoyanie chelovechestva. Trudy XIV Mezhdunarodnogo geneticheskogo kongressa (Genetics and Human Wellbeing: Proc. XIV Int. Genet. Congr.), Moscow: Nauka, 1981, pp. 178-184.
Tetushkin, E.Ya., Chronology of the Human Evolutionary History, Usp. Sovrem. Biol., vol. 120, no. 3, pp. 227-239.
Matyushin, G.N., U istokov chelovechestva (At the Origin of Humans), Moscow: Mysl', 1982.
Goodman, M., Substitutional Trends and Non-Random Changes in Rates during Protein Evolution, in Evolution of Protein Molecules, Tokyo: Jpn. Sci. Soc., 1978, pp. 17-32.
Goodman, M., The Synergism between Gene Duplication and Selection in Molecular Evolution, Genetics: New Frontiers: Proc. XV Int. Congr. of Genetics, New Delhi, 1983, pp. 235-248.
Ohta, T., Mechanisms of Molecular Evolution, Philos. Trans. R. Soc. London, A, 2000, vol. 355, pp. 1623-1626.
Fay, J.C., Wyckoff, G.J., and Wu, C.-I., Positive and Negative Selection on the Human Genome, Genetics, 2001, vol. 158, pp. 1227-1234.