Rashba spin-orbit interaction effects on thermal and magnetic properties of parabolic GaAs quantum dot in the presence of donor impurity under external electric and magnetic fields
Tài liệu tham khảo
Rashba, 1960, Properties of semiconductors with an extremum loop. I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop, Sov. Phys. Solid State, 2, 1109
Bychkov, 1984, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C Solid State Phys., 17, 6039, 10.1088/0022-3719/17/33/015
Moroz, 2000, Spin-orbit interaction as a source of spectral and transport properties in quasi-one-dimensional systems, Phys. Rev. B, 61, R2464, 10.1103/PhysRevB.61.R2464
Destefani, 2004, Spin-orbit coupling and intrinsic spin mixing in quantum dots, Phys. Rev. B, 69, 10.1103/PhysRevB.69.125302
Kloeffel, 2018, Direct Rashba spin-orbit interaction in Si and Ge nanowires with different growth directions, Phys Rev. B, 97, 235422, 10.1103/PhysRevB.97.235422
Bagga, 2006, Spin hot spots in vertically coupled few-electron isolated quantum dots, Phys. Rev. B, 74, 10.1103/PhysRevB.74.033313
Meir, 1990, Magnetic-field and spin-orbit interaction in restricted geometries: Solvable models, Phys. Rev. B, 42, 8351, 10.1103/PhysRevB.42.8351
Žutić, 2004, Spintronics: fundamentals and applications, Rev. Mod. Phys., 76, 323, 10.1103/RevModPhys.76.323
Hoi, 2017, Spin-and valley-dependent electronic band structure and electronic heat capacity of ferromagnetic silicene in the presence of strain, exchange field and Rashba spin-orbit coupling, J. Magn. Magn. Mater., 439, 203, 10.1016/j.jmmm.2017.04.092
Koga, 2002, Spin-filter device based on the Rashba effect using a nonmagnetic resonant tunneling diode, Phys. Rev. Lett., 88, 10.1103/PhysRevLett.88.126601
Datta, 1990, Electronic analog of the electro‐optic modulator, Appl. Phys. Lett., 56, 665, 10.1063/1.102730
Wang, 2002, Spin-current modulation and square-wave transmission through periodically stubbed electron waveguides, Phys. Rev. B, 65, 10.1103/PhysRevB.65.165217
Elsaid, 2019, The magnetization and magnetic susceptibility of GaAs Gaussian quantum dot with donor impurity in a magnetic field, Mod. Phys. Lett. B, 33, 10.1142/S0217984919504220
Bose, 1998, Effect of a parabolic potential on the impurity binding energy in spherical quantum dots, Physica B, 253, 238, 10.1016/S0921-4526(98)00407-4
Kırak, 2011, The electric field effects on the binding energies and the nonlinear optical properties of a donor impurity in a spherical quantum dot, J. Appl. Phys., 109, 10.1063/1.3582137
Hoi, 2018, Insulator-semimetallic transition in quasi-1D charged impurity-infected armchair boron-nitride nanoribbons, Phys. Lett. A, 382, 995, 10.1016/j.physleta.2018.02.016
Murillo, 2000, Effects of an electric field on the binding energy of a donor impurity in a spherical GaAs– (Ga, Al) As quantum dot with parabolic confinement, Phys. Status Solidi (B), 220, 187, 10.1002/1521-3951(200007)220:1<187::AID-PSSB187>3.0.CO;2-D
Bose, 1998, Binding energy of impurity states in spherical quantum dots with parabolic confinement, J. Appl. Phys., 83, 3089, 10.1063/1.367065
Zhu, 1990, Confined electron and hydrogenic donor states in a spherical quantum dot of GaAs-Ga 1− x Al x As, Phys. Rev. B, 41, 6001, 10.1103/PhysRevB.41.6001
Hoi, 2018, Combined effect of the perpendicular magnetic field and dilute charged impurity on the electronic phase of bilayer AA-stacked hydrogenated graphene, Phys. Lett. A, 382, 3298, 10.1016/j.physleta.2018.09.028
Li, 2007, Binding energy of a hydrogenic donor impurity in a rectangular parallelepiped-shaped quantum dot: quantum confinement and Stark effects, J. Appl. Phys., 101, 10.1063/1.2734097
Charrour, 2000, Magnetic field effect on the binding energy of a hydrogenic impurity in cylindrical quantum dot, Physica B, 293, 137, 10.1016/S0921-4526(00)00495-6
Sali, 2017, The effects of polaronic mass and conduction band non-parabolicity on a donor binding energy under the simultaneous effect of pressure and temperature basing on the numerical FEM in a spherical quantum dot, Superlattices Microstruct., 104, 93, 10.1016/j.spmi.2017.02.014
Hoi, 2018, Zeeman-magnetic-field–induced magnetic phase transition in doped armchair boron-nitride nanoribbons, EPL (Europhys. Lett.), 122, 17005, 10.1209/0295-5075/122/17005
Qu, 2011, Tunable magnetic property of lateral quantum dot molecules, J. Phy.: Conf. Ser., 334
Ciftja, 2007, Generalized description of few-electron quantum dots at zero and nonzero magnetic fields, J. Phys. Condens. Matter, 19, 10.1088/0953-8984/19/4/046220
Soylu, 2012, The influence of external fields on the energy of two interacting electrons in a quantum dot, Ann. Phys., 327, 3048, 10.1016/j.aop.2012.06.008
Karimi, 2011, Effects of external electric and magnetic fields on the linear and nonlinear intersubband optical properties of finite semi-parabolic quantum dots, Physica B, 406, 4423, 10.1016/j.physb.2011.08.105
Wang, 2009, Effect of a tilted electric field on the magnetoexciton ground state in a semiconductor quantum dot, J. Appl. Phys., 105, 10.1063/1.3088886
Liang, 2011, The hydrostatic pressure and temperature effects on a hydrogenic impurity in a spherical quantum dot, Eur. Phys. J. B, 81, 79, 10.1140/epjb/e2011-10831-9
Akbas, 2011, Hydrostatic pressure effects on impurity states in GaAs/AlGaAs quantum wells, Superlattices Microstruct., 50, 80, 10.1016/j.spmi.2011.05.006
Bzour, 2017, The effects of pressure and temperature on the magnetic susceptibility of semiconductor quantum dot in a magnetic field, App. Phys. Res., 9, 77, 10.5539/apr.v9n1p77
Peter, 2005, The effect of hydrostatic pressure on binding energy of impurity states in spherical quantum dots, Physica E, 28, 225, 10.1016/j.physe.2005.03.018
Bzour, 2017, The effects of pressure and temperature on the exchange energy of a parabolic quantum dot under a magnetic field, J. Taibah. Univ. Med. Sci., 11, 1122, 10.1016/j.jtusci.2017.02.004
Boda, 2016, Transition energies and magnetic properties of a neutral donor complex in a Gaussian GaAs quantum dot, Superlattices Microstruct., 97, 268, 10.1016/j.spmi.2016.06.009
Tojo, 2017, Effect of isotropy and anisotropy of the confinement potential on the Rashba spin–orbit interaction for an electron in a two-dimensional quantum dot system, Japan. J. Appl. Phys., 56, 10.7567/JJAP.56.075201
Boda, 2016, Effect of Rashba spin–orbit coupling on the electronic, thermodynamic, magnetic and transport properties of GaAs, InAs and InSb quantum dots with Gaussian confinement, Physica B, 498, 43, 10.1016/j.physb.2016.06.012
Pournaghavi, 2017, Extrinsic Rashba spin–orbit coupling effect on silicene spin polarized field effect transistors, J. Phys. Condens. Matter, 29, 10.1088/1361-648X/aa5b06
Sinova, 2004, Universal intrinsic spin Hall effect, Phys. Rev. Lett., 92, 10.1103/PhysRevLett.92.126603
Hwang, 2004, Numerical simulation of three-dimensional pyramid quantum dot, J. Comput. Phys., 196, 208, 10.1016/j.jcp.2003.10.026
Johnson, 1998, Finite element analysis of strain effects on electronic and transport properties in quantum dots and wires, J. Appl. Phys., 84, 3714, 10.1063/1.368549
El-Said, 1994, Effects of applied magnetic field on the energy levels of shallow donors in a parabolic quantum dot, Physica B, 202, 202, 10.1016/0921-4526(94)00163-4
Abuzaid, 2019, Combined effects of pressure, temperature, and magnetic field on the ground state of donor impurities in a GaAs/AlGaAs quantum heterostructure, Int. J. Nano Dimens., 10, 375
Bulaev, 2005, Spin relaxation and anticrossing in quantum dots: Rashba versus Dresselhaus spin-orbit coupling, Phys. Rev. B, 71, 10.1103/PhysRevB.71.205324
Florescu, 2006, Spin relaxation in lateral quantum dots: effects of spin-orbit interaction, Phys. Rev. B, 73, 10.1103/PhysRevB.73.045304
Halperin, 2001, Spin-orbit effects in a GaAs quantum dot in a parallel magnetic field, Phys. Rev. Lett., 86, 2106, 10.1103/PhysRevLett.86.2106
Jacak, 1997, Spin-orbit interaction in the quantum dot, Physica B, 229, 279, 10.1016/S0921-4526(96)00853-8
Voskoboynikov, 2001, Spin-orbit splitting in semiconductor quantum dots with a parabolic confinement potential, Phys. Rev. B, 63, 10.1103/PhysRevB.63.165306
Voskoboynikov, 2003, Magnetic properties of parabolic quantum dots in the presence of the spin–orbit interaction, J. Appl. Phys., 94, 5891, 10.1063/1.1614426
Governale, 2002, Quantum dots with Rashba spin-orbit coupling, Phys. Rev. Lett., 89, 10.1103/PhysRevLett.89.206802
Manaselyan, 2011, Tunability of Raman spectral signatures by Rashba spin-orbit interaction in few-electron quantum dots, EPL (Europhys. Lett.), 94, 57005, 10.1209/0295-5075/94/57005
Lee, 2006, Rashba spin splitting in parabolic quantum dots, J. Appl. Phys., 99, 10.1063/1.2201847
Pietiläinen, 2006, Energy levels and magneto-optical transitions in parabolic quantum dots with spin-orbit coupling, Phys. Rev. B, 73, 10.1103/PhysRevB.73.155315
Kuan, 2004, Energy levels of a parabolically confined quantum dot in the presence of spin-orbit interaction, J. Appl. Phys., 95, 6368, 10.1063/1.1710726
Kumar, 2013, Effect of Rashba interaction and Coulomb correlation on the ground state energy of a GaAs quantum dot with parabolic confinement, Physica E, 47, 270, 10.1016/j.physe.2012.10.030
Gumber, 2016, Thermodynamic behaviour of Rashba quantum dot in the presence of magnetic field, Chin. Phys. B, 25, 10.1088/1674-1056/25/5/056502
Kumar, 2016, Magnetization and susceptibility of a parabolic InAs quantum dot with electron–electron and spin–orbit interactions in the presence of a magnetic field at finite temperature, J. Magn. Magn. Mater., 418, 169, 10.1016/j.jmmm.2016.02.071
Schwarz, 2002, Magnetization of semiconductor quantum dots, J. Appl. Phys., 91, 6875, 10.1063/1.1450762
Turyanska, 2014, Tuneable paramagnetic susceptibility and exciton g-factor in Mn-doped PbS colloidal nanocrystals, Nanoscale, 6, 8919, 10.1039/C4NR02336F
Shorman, 2018, Heat capacity and entropy of two electrons quantum dot in a magnetic field with parabolic interaction, Chin. J. Phys., 56, 1057, 10.1016/j.cjph.2018.04.012
Nguyen, 2011, Impurity effects on semiconductor quantum bits in coupled quantum dots, Phys. Rev. B, 83, 10.1103/PhysRevB.83.235322
Shaer, 2016, The magnetic properties of a quantum dot in a magnetic field, Turkish J. Phys., 40, 209, 10.3906/fiz-1510-4
Shaer, 2016, Magnetization of GaAs parabolic quantum dot by variation method, J. Phys. Sci. Appl., 6, 39
Yahyah, 2019, Heat capacity and entropy of Gaussian spherical quantum dot in the presence of donor impurity, J. Theor. Appl. Phys., 13, 277, 10.1007/s40094-019-0336-1