Rarefaction effects on hypersonic boundary-layer stability

Acta Mechanica Sinica - Tập 40 Số 3 - Trang 1-18 - 2024
Ou, Jihui1,2,3, Wang, Chenyue1,2, Chen, Jie1,2,3
1Laboratory of High-speed Aerodynamics, Tianjin University, Tianjin, China
2Department of Mechanics, Tianjin University, Tianjin, China
3Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin, China

Tóm tắt

Near-space hypersonic vehicles could experience both continuous and rarefied flow regimes during the flight through atmosphere. The rarefaction effects on hypersonic boundary-layer stability are studied based on the Navier-Stokes (NS) equations and an improved NS model. The conventional linear stability theory (LST) is extended for rarefied shear flows by adopting slip boundary conditions and nonlinear transport relations. A flow at Mach 10 over a flat plate at an altitude of 55 km is the main case of analysis. The separate and combined effects of rarefaction (including surface slip and shear nonequilibrium) on stability by influencing the base flow and stability equation are clarified. The results show that for the base flow, rarefaction effects cause the boundary layer to become thinner and the generalized inflection point to move towards the wall. For stability, rarefaction effects have a stabilizing effect on the second-mode instability by influencing the base flow while a destabilizing effect by modifying the stability equation. The combined effects of rarefaction suppress the second-mode instability for different Mach number cases. However, for the first-mode instability, rarefaction effects play a destabilizing role. These results shed light on the hypersonic boundary-layer stability in the near-continuum regime from a macroscopic view.

Từ khóa


Tài liệu tham khảo

citation_journal_title=Annu. Rev. Fluid Mech.; citation_title=Linear stability theory applied to boundary layers; citation_author=H L Reed, W S Saric, D Arnal; citation_volume=28; citation_publication_date=1996; citation_pages=389; citation_doi=10.1146/annurev.fl.28.010196.002133; citation_id=CR1

citation_journal_title=Annu. Rev. Fluid Mech.; citation_title=Transition and stability of high-speed boundary layers; citation_author=A Fedorov; citation_volume=43; citation_publication_date=2011; citation_pages=79; citation_doi=10.1146/annurev-fluid-122109-160750; citation_id=CR2

citation_journal_title=Phys. Fluids; citation_title=Numerical study of supersonic boundary-layer modal stability for a slightly rarefied gas using Navier-Stokes approach; citation_author=J Ou, J Chen; citation_volume=33; citation_publication_date=2021; citation_pages=114107; citation_doi=10.1063/5.0065283; citation_id=CR3

citation_journal_title=Theor. Comput. Fluid Dyn.; citation_title=Linear stability analysis of hypersonic boundary layers computed by a kinetic approach: A semi-infinite flat plate at 4.5 ≤ M∞ ≤ 9; citation_author=A Klothakis, H Quintanilha, S S Sawant, E Protopapadakis, V Theofilis, D A Levin; citation_volume=36; citation_publication_date=2022; citation_pages=117; citation_doi=10.1007/s00162-021-00601-y; citation_id=CR4

citation_journal_title=Phys. Rev. E; citation_title=Influence of Knudsen and Mach numbers on Kelvin-Helmholtz instability; citation_author=V Mohan, A Sameen, B Srinivasan, S S Girimaji; citation_volume=103; citation_publication_date=2021; citation_pages=053104; citation_doi=10.1103/PhysRevE.103.053104; citation_id=CR5

citation_journal_title=Acta Aerodyn. Sin.; citation_title=Two problems in the transition and turbulence for near space hypersonic flying vehicles; citation_author=H Zhou, H X Zhang; citation_volume=35; citation_publication_date=2021; citation_pages=151; citation_id=CR6

citation_journal_title=Acta Mech. Sin.; citation_title=Rarefied gas effect in hypersonic shear flows; citation_author=J Chen, H Zhou; citation_volume=37; citation_publication_date=2021; citation_pages=2; citation_doi=10.1007/s10409-021-01051-9; citation_id=CR7

citation_journal_title=Phys. Fluids; citation_title=Predicting continuum breakdown in hypersonic viscous flows; citation_author=W L Wang, I D Boyd; citation_volume=15; citation_publication_date=2003; citation_pages=91; citation_doi=10.1063/1.1524183; citation_id=CR8

citation_journal_title=AIP Conf. Proc.; citation_title=Molecular dynamics simulations of high speed rarefied gas flows; citation_author=N Dongari, Y Zhang, J M Reese; citation_volume=1501; citation_publication_date=2012; citation_pages=895; citation_doi=10.1063/1.4769637; citation_id=CR9

citation_journal_title=Phys. Fluids; citation_title=Nonlinear transport of rarefied Couette flows from low speed to high speed; citation_author=J Ou, J Chen; citation_volume=32; citation_publication_date=2020; citation_pages=112021; citation_doi=10.1063/5.0029680; citation_id=CR10

citation_journal_title=Philos. Trans. R. Soc. London; citation_title=On stresses in rarefied gases arising from inequalities of temperature; citation_author=J C Maxwell; citation_volume=170; citation_publication_date=1879; citation_pages=304; citation_id=CR11

citation_journal_title=Annalen der Physik und Chemie; citation_title=Ueber wärmeleitung in verdünnten gasen; citation_author=M von Smoluchowski; citation_volume=64; citation_publication_date=1898; citation_pages=101; citation_doi=10.1002/andp.18983000110; citation_id=CR12

citation_journal_title=J. Thermophys. Heat Transfer; citation_title=Velocity slip and temperature jump in hypersonic aerothermodynamics; citation_author=A J Lofthouse, L C Scalabrin, I D Boyd; citation_volume=22; citation_publication_date=2008; citation_pages=38; citation_doi=10.2514/1.31280; citation_id=CR13

citation_journal_title=Microfluid Nanofluid; citation_title=A review on slip models for gas microflows; citation_author=W M Zhang, G Meng, X Wei; citation_volume=13; citation_publication_date=2012; citation_pages=845; citation_doi=10.1007/s10404-012-1012-9; citation_id=CR14

citation_journal_title=Proc. London Math. Soc.; citation_title=The distribution of velocities in a slightly non-uniform gas; citation_author=D Burnett; citation_volume=s2–39; citation_publication_date=1935; citation_pages=385; citation_doi=10.1112/plms/s2-39.1.385; citation_id=CR15

citation_journal_title=Comm. Pure Appl. Math.; citation_title=On the kinetic theory of rarefied gases; citation_author=H Grad; citation_volume=2; citation_publication_date=1949; citation_pages=331; citation_doi=10.1002/cpa.3160020403; citation_id=CR16

citation_journal_title=Annu. Rev. Fluid Mech.; citation_title=Modeling nonequilibrium gas flow based on moment equations; citation_author=M Torrilhon; citation_volume=48; citation_publication_date=2016; citation_pages=429; citation_doi=10.1146/annurev-fluid-122414-034259; citation_id=CR17

citation_title=Molecular Gas Dynamics and the Direct Simulation of Gas Flows; citation_publication_date=1994; citation_id=CR18; citation_author=G A Bird; citation_publisher=Oxford University Press

citation_title=A Unified Computational Fluid Dynamics Framework from Rarefied to Continuum Regimes; citation_publication_date=2021; citation_id=CR19; citation_author=K Xu; citation_publisher=Cambridge University Press

citation_journal_title=Acta Mech. Sin.; citation_title=Progress of the unified wave-particle methods for non-equilibrium flows from continuum to rarefied regimes; citation_author=S Liu, K Xu, C Zhong; citation_volume=38; citation_publication_date=2022; citation_pages=122123; citation_doi=10.1007/s10409-022-22123-x; citation_id=CR20

citation_journal_title=Annu. Rev. Fluid Mech.; citation_title=Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers; citation_author=X Zhong, X Wang; citation_volume=44; citation_publication_date=2012; citation_pages=527; citation_doi=10.1146/annurev-fluid-120710-101208; citation_id=CR21

L. Lees, and C. C. Lin, Investigation of the Stability of the Laminar Boundary Layer in a Compressible Fluid, NACA Report No. TN 1115 (1946).

citation_journal_title=AIAA J.; citation_title=Linear stability theory and the problem of supersonic boundary-layer transition; citation_author=L M Mack; citation_volume=13; citation_publication_date=1975; citation_pages=278; citation_doi=10.2514/3.49693; citation_id=CR23

L. M. Mack, Boundary-Layer Linear Stability Theory, Technical Report No. AGARD-R-709 (1984).

citation_journal_title=J. Fluid Mech.; citation_title=On the first-mode instability in subsonic, supersonic or hypersonic boundary layers; citation_author=F T Smith; citation_volume=198; citation_publication_date=1989; citation_pages=127; citation_doi=10.1017/S0022112089000078; citation_id=CR25

citation_journal_title=Theoret. Comput. Fluid Dyn.; citation_title=On the inviscid acoustic-mode instability of supersonic shear flows; citation_author=L M Mack; citation_volume=2; citation_publication_date=1990; citation_pages=97; citation_doi=10.1007/BF00272137; citation_id=CR26

citation_journal_title=Theor. Comput. Fluid Dyn.; citation_title=Prehistory of instability in a hypersonic boundary layer; citation_author=A V Fedorov, A P Khokhlov; citation_volume=14; citation_publication_date=2001; citation_pages=359; citation_doi=10.1007/s001620100038; citation_id=CR27

citation_journal_title=J. Eng. Math.; citation_title=Receptivity of inviscid modes in supersonic boundary layers to wall perturbations; citation_author=Y Liu, M Dong, X Wu; citation_volume=128; citation_publication_date=2021; citation_pages=20; citation_doi=10.1007/s10665-021-10124-4; citation_id=CR28

citation_journal_title=J. Fluid Mech.; citation_title=Generation of first Mack modes in supersonic boundary layers by slow acoustic waves interacting with stream-wise isolated wall roughness; citation_author=Y Liu, M Dong, X Wu; citation_volume=888; citation_publication_date=2020; citation_pages=A10; citation_doi=10.1017/jfm.2020.38; citation_id=CR29

citation_journal_title=J. Fluid Mech.; citation_title=Receptivity of inviscid modes in supersonic boundary layers due to scattering of free-stream sound by localised wall roughness; citation_author=M Dong, Y Liu, X Wu; citation_volume=896; citation_publication_date=2020; citation_pages=A23; citation_doi=10.1017/jfm.2020.358; citation_id=CR30

citation_journal_title=Comput. Fluids; citation_title=Effects of wall temperature on boundary layer stability over a blunt cone at Mach 7.99; citation_author=X Liang, X Li, D Fu, Y Ma; citation_volume=39; citation_publication_date=2010; citation_pages=359; citation_doi=10.1016/j.compfluid.2009.09.015; citation_id=CR31

citation_journal_title=Acta Mech. Sin.; citation_title=Effects of nose bluntness on entropy-layer stabilities over cones and wedges; citation_author=B Wan, J Chen, G Tu, X Xiang, X Yuan, M Duan; citation_volume=39; citation_publication_date=2023; citation_pages=122176; citation_doi=10.1007/s10409-022-22176-x; citation_id=CR32

citation_journal_title=Phys. Fluids A-Fluid Dyn.; citation_title=Real gas effects on hypersonic boundary-layer stability; citation_author=M R Malik, E C Anderson; citation_volume=3; citation_publication_date=1991; citation_pages=803; citation_doi=10.1063/1.858012; citation_id=CR33

citation_journal_title=AIAA J.; citation_title=Parabolized stability analysis of hypersonic thermal-chemical nonequilibrium boundary-layer flows; citation_author=X Chen, L Wang, S Fu; citation_volume=59; citation_publication_date=2021; citation_pages=2382; citation_doi=10.2514/1.J059994; citation_id=CR34

citation_journal_title=Phys. Fluids; citation_title=A note on the stability of slip channel flows; citation_author=E Lauga, C Cossu; citation_volume=17; citation_publication_date=2005; citation_pages=088106; citation_doi=10.1063/1.2032267; citation_id=CR35

citation_journal_title=Phys. Fluids; citation_title=Stability of slip channel flow revisited; citation_author=C Chai, B Song; citation_volume=31; citation_publication_date=2019; citation_pages=084105; citation_doi=10.1063/1.5108804; citation_id=CR36

citation_journal_title=Phys. Fluids; citation_title=Linear stability and energy stability of plane Poiseuille flow with isotropic and anisotropic slip boundary conditions; citation_author=X Xiong, J Tao; citation_volume=32; citation_publication_date=2020; citation_pages=094104; citation_doi=10.1063/5.0015737; citation_id=CR37

citation_journal_title=Eur. Phys. J. Plus; citation_title=Linear stability analysis of laminar flow near a stagnation point in the slip flow regime; citation_author=E Essaghir, A Oubarra, J Lahjomri; citation_volume=132; citation_publication_date=2017; citation_pages=545; citation_doi=10.1140/epjp/i2017-11824-x; citation_id=CR38

citation_journal_title=Phys. Fluids; citation_title=A numerical study on the natural transition locations in the flat-plate boundary layers on superhydrophobic surfaces; citation_author=B Liu, Y Zhang; citation_volume=32; citation_publication_date=2020; citation_pages=124103; citation_doi=10.1063/5.0030713; citation_id=CR39

citation_journal_title=Fluids; citation_title=Stability analysis on nonequilibrium supersonic boundary layer flow with velocity-slip boundary conditions; citation_author=X He, K Zhang, C Cai; citation_volume=4; citation_publication_date=2019; citation_pages=142; citation_doi=10.3390/fluids4030142; citation_id=CR40

citation_journal_title=Phys. Fluids; citation_title=A new linear stability analysis approach for microchannel flow based on the Boltzmann Bhatnagar-Gross-Krook equation; citation_author=S Zou, C Zhong, L Bi, X Yuan, Z Tang; citation_volume=34; citation_publication_date=2022; citation_pages=124114; citation_doi=10.1063/5.0131135; citation_id=CR41

citation_journal_title=Comput. Fluids; citation_title=DSMC data-improved numerical simulation of hypersonic flow past a flat plate in near-continuum regime; citation_author=J Ou, J Chen; citation_volume=194; citation_publication_date=2019; citation_pages=104308; citation_doi=10.1016/j.compfluid.2019.104308; citation_id=CR42

citation_journal_title=AIAA J.; citation_title=Hypersonic aerodynamics of blunt plates in near-continuum regime by improved Navier-Stokes model; citation_author=J Ou, J Chen; citation_volume=58; citation_publication_date=2020; citation_pages=4037; citation_doi=10.2514/1.J059333; citation_id=CR43

citation_journal_title=Phys. Rev. A; citation_title=Hilbert-class or “normal” solutions for stationary heat flow; citation_author=C S Kim, J W Dufty, A Santos, J J Brey; citation_volume=39; citation_publication_date=1989; citation_pages=328; citation_doi=10.1103/PhysRevA.39.328; citation_id=CR44

citation_title=Kinetic Theory of Gases in Shear Flows: Nonlinear Transport; citation_publication_date=2003; citation_id=CR45; citation_author=V Garzó; citation_author=A Santos; citation_publisher=Springer Science & Business Media

citation_journal_title=J. Comput. Phys.; citation_title=Numerical methods for hypersonic boundary layer stability; citation_author=M R Malik; citation_volume=86; citation_publication_date=1990; citation_pages=376; citation_doi=10.1016/0021-9991(90)90106-B; citation_id=CR46