Rarefaction and compressibility effects on steady and transient gas flows in microchannels
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arkilic EB, Breuer KS (1993) Gaseous flow in small channels. AIAA paper, 93–3270, pp 1–7
Arkilic EB, Breuer KS, Schmidt MA (2001) Mass flow and tangential momentum accommodation in silicon micromachined channels. J Fluid Mech 437:29–43
Aubert C, Colin S (2001) High-order boundary conditions for gaseous flows in rectangular microchannels. Microscale Therm Eng 5(1):41–54
Aubert C, Colin S, Caen R (1998) Unsteady gaseous flows in tapered microchannels. In: Proceedings of the 1st international conference on modeling and simulation of microsystems, semiconductors, sensors, and actuators (MSM’98), vol 1, Santa Clara, California, Marriot Computational Publications, pp 486–491
Beskok A, Karniadakis GE (1999) A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Therm Eng 3(1):43–77
Bird GA (1998) Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford
Caen R, Mas I, Colin S (1996) Ecoulements non permanents dans les microcanaux: réponse fréquentielle des microtubes pneumatiques. C R Acad Sci, Sér IIb 323:805–812
Cercignani C, Illner R, Pulvirenti M (1994) The mathematical theory of dilute gases, vol 106. Springer, Berlin Heidelberg New York
Chapman S, Cowling TG (1952) The mathematical theory of non-uniform gases. Cambridge University Press, Cambridge
Chen CS, Lee SM, Sheu JD (1998) Numerical analysis of gas flow in microchannels. Numer Heat Transf A 33:749–762
Colin S, Anduze M, Caen R (1998a) A pneumatic frequency generator for experimental analysis of unsteady microflows. In: Proceedings of the 1998 ASME International mechanical engineering congress and exposition, Anaheim, California, November 1998
Colin S, Aubert C, Caen R (1998b) Unsteady gaseous flows in rectangular microchannels: frequency response of one or two pneumatic lines connected in series. Euro J Mech B–Fluids 17(1):79–104
Colin S, Elizarova TG, Sheretov YV, Lengrand J-C, Camon H (2003) Micro-écoulements gazeux: validation expérimentale de modèles QHD et de Navier-Stokes avec conditions aux limites de glissement. In: CDROM de 16ème Congrès Français de Mécanique, Nice, France, September 2003
Colin S, Lalonde P, Caen R (2004) Validation of a second-order slip flow model in rectangular microchannels. Heat Transfer Eng 25(3):23–30
Deissler RG (1964) An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases. Int J Heat Mass Transf 7:681–694
Elizavora TG, Sheretov YV (2001) Theoretical and numerical investigation of quasi-gasdynamic and quasi-hydrodynamic equations. Comput Math Phys 41(2)219–234
Elizarova TG, Sheretov YV (2003) Analyse du problème de l’écoulement gazeux dans les microcanaux par les équations quasi hydrodynamiques. La Houille Blanche 5:66–72
Fan J, Shen C (1999) Statistical simulation of low-speed unidirectional flows in transition regime. In: Brun R, Campargue R, Gatigno Rl, Lengrand J-C (eds) Rarefied gas dynamics, vol 2. Cépaduès Editions, Toulouse, France, pp 245–252
Gad-el-Hak M (1999) The fluid mechanics of microdevices—the Freeman scholar lecture. J Fluid Eng 121:5–33
Hash D, Hassan H (1997) Two-dimensional coupling issues of hybrid DSMC/Navier-Stokes solvers. AIAA paper 97-2507:6333–6336
Hobson JP (1970) Accommodation pumping—a new principle for low pressure. J Vacuum Sci Technol 7(2):301–357
Hobson JP (1972) Physical factors influencing accommodation pumps. J Vacuum Sci Technol 9(1):252–256
Hudson ML, Bartel TJ (1999) DSMC simulation of thermal transpiration and accommodation pumps. In: Brun R, Campargue R, Gatigno Rl, Lengrand J-C (eds) Rarefied gas dynamics, vol 1. Cépaduès Editions, Toulouse, France, pp 719–726
Jie D, Diao X, Cheong KB, Yong LK (2000) Navier-Stokes simulations of gas flow in micro devices. J Micromech Microeng 10(3):372–379
Karniadakis GE, Beskok A (2002) Microflows: fundamentals and simulation. Springer, Berlin Heidelberg New York
Kennard EH (1938) Kinetic theory of gases, 1st ed. McGraw-Hill, New York
Lalonde P (2001) Etude expérimentale d’écoulements gazeux dans les microsystèmes à fluides. PhD thesis, Institut National des Sciences Appliquées, Toulouse, France
Lengrand J-C, Elizarova TG (2004) Microécoulements gazeux. In: Colin S (ed) Microfluidique, chapter 2. Hermès, Paris, France
Liu J, Tai Y-C, Ho C-M (1995) MEMS for pressure distribution studies of gaseous flows in microchannels. In: Proceedings of the 8th IEEE annual international workshop on micro-electro-mechanical systems (MEMS’95), an investigation of micro structures, sensors, actuators, machines, and systems, Amsterdam, The Netherlands, January/February 1995, pp 209–215
Loyalka SK, Hamoodi SA (1990) Poiseuille flow of a rarefied gas in a cylindrical tube: solution of linearized Boltzmann equation. Phys Fluids A 2(11): 2061–2065
Maurer J, Tabeling P, Joseph P, Willaime H (2003) Second-order slip laws in microchannels for helium and nitrogen. Phys Fluids 15(9):2613–2621
Mavriplis C, Ahn JC, Goulard R (1997) Heat transfer and flowfields in short microchannels using direct simulation Monte Carlo. J Thermophys Heat Transf 11(4):489–496
Maxwell JC (1879) On stresses in rarefied gases arising from inequalities of temperature. Philos Trans R Soc 170:231–256
Mitsuya Y (1993) Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coefficient. J Tribol 115:289–294
Muntz EP, Vargo SE (2002) Microscale vacuum pumps. In: Gad-el-Hak M (ed) The MEMS handbook. CRC Press, New York, pp 29.1–29.28
Norberg P, Ackelid U, Lundstrom I, Petersson LG (1997) On the transient gas flow through catalytically active micromachined channels. J Appl Phys 81(5):2094–2100
Oran ES, Oh CK, Cybyk BZ (1998) Direct simulation Monte Carlo: recent advances and applications. Annu Rev Fluid Mech 30:403–441
Pan LS, Liu GR, Lam KY (1999) Determination of slip coefficient for rarefied gas flows using direct simulation Monte Carlo. J Micromech Microeng 9(1):89–96
Pan LS, Ng TY, Xu D, Lam KY (2001) Molecular block model direct simulation Monte Carlo method for low velocity microgas flows. J Micromech Microeng 11(3):181–188
Piekos ES, Breuer KS (1996) Numerical modeling of micromechanical devices using the direct simulation Monte Carlo method. J Fluid Eng 118:464–469
Roveda R, Goldstein D, Varghese P (1998) Hybrid Euler/particle approach for continuum/rarefied flows. J Spacecraft Rockets 35(3):258–265
Sharipov F, Seleznev V (1998) Data on internal rarefied gas flows. J Phys Chem Ref Data 27(3):657–706
Shih JC, Ho C-M, Liu J, Tai Y-C (1996) Monatomic and polyatomic gas flow through uniform microchannels. ASME DSC 59:197–203
Sreekanth AK (1969) Slip flow through long circular tubes. In: Trilling L, Wachman HY (eds) Proceedings of the 6th international symposium on rarefied gas dynamics. Academic Press, New York, pp 667–680
Stefanov S, Cercignani C (1994) Monte Carlo simulation of a channel flow of a rarefied gas. Eur J Mech B–Fluids 13(1):93–114
Vargo SE, Muntz EP (1997) An evaluation of a multiple-stage micromechanical Knudsen compressor and vacuum pump. In: Proceedings of the 20th international symposium on rarefied gas dynamics (RGD-20). Beijing, China, pp 995–1000
Vargo SE, Muntz EP (1999) Comparison of experiment and prediction for transitional flow in a single-stage micromechanical Knudsen compressor. In: Brun R, Campargue R, Gatignol R, Lengrand J-C (eds) Rarefied gas dynamics, vol 1. Cépaduès Editions, Toulouse, France, pp 711–718
Vargo SE, Muntz EP, Shiflett GR, Tang WC (1999) Knudsen compressor as a micro- and macroscale vacuum pump without moving parts or fluids. J Vacuum Sci Technol A 17(4):2308–2313
Wu J-S, Tseng K-C (2001) Analysis of micro-scale gas flows with pressure boundaries using direct simulation Monte Carlo method. Comput Fluids 30(6):711–735
Xue H, Fan Q (2000) A new analytic solution of the Navier-Stokes equations for microchannel flow. Microscale Therm Eng 4(2):125–143