Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles
Tóm tắt
Từ khóa
Tài liệu tham khảo
Okano, T. (ed.) Biorelated Polymers and Gels (Academic, San Diego, 1998)
Peppas, N. A., Huang, Y., Torres-Lugo, M., Ward, J. H. & Zhang, J. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng. 2, 9–29 (2000)
Ward, A. G. & Courts, A. (eds) The Science and Technology of Gelatin (Academic, London, 1977)
Petka, W. A., Harden, J. L., McGrath, K. P., Wirtz, D. & Tirrell, D. A. Reversible hydrogels from self-assembling artificial proteins. Science 281, 389–392 (1998)
Wang, C., Stewart, R. J. & Kopeček, J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397, 417–420 (1999)
Deming, T. J. Facile synthesis of block copolypeptides of defined architecture. Nature 390, 386–389 (1997)
Deming, T. J. Cobalt and iron initiators for the controlled polymerization of alpha-amino acid-N-carboxyanhydrides. Macromolecules 32(13), 4500–4502 (1999)
Katchalski, E. & Sela, M. Synthesis and chemical properties of poly-α-amino acids. Adv. Protein Chem. 13, 243–492 (1958)
Buitenhuis, J. & Forster, S. Block copolymer micelles: viscoelasticity and interaction potential of soft spheres. J. Chem. Phys. 107(1), 262–272 (1997)
Guenoun, P. et al. Polyelectrolyte micelles: self-diffusion and electron microscopy studies. Langmuir 16(10), 4436–4440 (2000)
Hamley, I. W. et al. From hard to soft spheres: the effect of copolymer composition on the structure of micellar cubic phases formed by diblock copolymers in aqueous solution. Langmuir 16(6), 2508–2514 (2000)
Moffitt, M., Khougaz, K. & Eisenberg, A. Micellization of ionic block copolymers. Acc. Chem. Res. 29, 95–102 (1996)
Tsitsilianis, C., Iliopoulos, I. & Ducouret, G. An associative polyelectrolyte end-capped with short polystyrene chains. Synthesis and rheological behaviour. Macromolecules 33(8), 2936–2943 (2000)
Clark, A. C. & Ross-Murphy, S. B. Structural and mechanical properties of biopolymer gels. Adv. Polym. Sci. 83, 57–192 (1987)
Kavanagh, G. M. & Ross-Murphy, S. B. Rheological characterisation of polymer gels. Prog. Polym. Sci. 23(3), 533–562 (1998)
Yu, M., Nowak, A. P., Pochan, D. P. & Deming, T. J. Methylated mono- and diethyleneglycol functionalized polylysines: nonionic, helical, water soluble polypeptides. J. Am. Chem. Soc. 121, 12210–12211 (1999)
Crocker, J. C. et al. Two-point microrheology of inhomogeneous soft materials. Phys. Rev. Lett. 85(4), 888–891 (2000)
Mason, T. G. & Weitz, D. A. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74(7), 1250–1253 (1995)
Liu, L., Li, P. & Asher, S. A. Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel. Nature 397, 141–144 (1999)
Falini, G., Fermani, S., Gazzano, M. & Ripamonti, A. Polymorphism and architectural crystal assembly of calcium carbonate in biologically inspired polymeric matrices. J. Chem. Soc. Dalton 21, 3983–3987 (2000)
Cha, J. N., Stucky, G. D., Morse, D. E. & Deming, T. J. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403, 289–292 (2000)
Klein, H. F. & Karsch, H. H. Methylcobalt compounds with non-chelating ligands. 1. Methyltetrakis(trimethylphosphine) cobalt and its derivatives. Chem. Ber. 108(3), 944–955 (1975)
Kubota, S. & Fasman, G. Conformation and optical properties of poly(L-valine) in aqueous solution. “A single extended β chain.”. J. Am. Chem. Soc. 96, 4684–4686 (1974)