Rapid staining and imaging of subnuclear features to differentiate between malignant and benign breast tissues at a point-of-care setting

Joshua Mueller1, Jennifer E. Gallagher2, Rhea Chitalia1, Marlee Krieger1, Alaattin Erkanli3, Rebecca Willett4, Joseph Geradts5, Nimmi Ramanujam1
1Department of Biomedical Engineering, Duke University, Durham, USA
2Department of Surgery, Duke University Medical Center, Durham, USA
3Department of Biostatistics and Bioinformatics, Duke University, Durham, USA
4Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, USA
5Department of Pathology, Brigham and Women’s Hospital, Boston, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adeyi OA (2011) Pathology services in developing countries-The West African experience. Arch Pathol Lab Med 135:183–186

Ballard D (1981) Generalizing the hough transform to detect arbitrary shapes, vol 13. Pattern Recognition,

Balu M et al (2014) Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy. Cancer Res 74:2688–2697. doi: 10.1158/0008-5472.CAN-13-2582

Boppart SA, Luo W, Marks DL, Singletary KW (2004) Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer. Breast Cancer Res Treat 84:85–97. doi: 10.1023/B:BREA.0000018401.13609.54

Chasles F, Dubertret B, Boccara AC (2007) Optimization and characterization of a structured illumination microscope. Opt Express 15:16130–16140

Clark AL, Gillenwater AM, Collier TG, Alizadeh-Naderi R, El-Naggar AK, Richards-Kortum RR (2003) Confocal microscopy for real-time detection of oral cavity neoplasia. Clin Cancer Res 9:4714–4721

Clark AL, Gillenwater A, Alizadeh-Naderi R, El-Naggar AK, Richards-Kortum R (2004) Detection and diagnosis of oral neoplasia with an optical coherence microscope. J Biomed Opt 9:1271–1280. doi: 10.1117/1.1805558

Cohen C (1996) Image cytometric analysis in pathology. Hum Pathol 27:482–493

Dobbs JL, Ding H, Benveniste AP, Kuerer HM, Krishnamurthy S, Yang W, Richards-Kortum R (2013) Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue. J Biomed Opt 18:106016. doi: 10.1117/1.JBO.18.10.106016

Drezek RA et al (2003) Optical imaging of the cervix. Cancer 98:2015–2027. doi: 10.1002/cncr.11678

Ferguson LR, Denny WA (1991) The genetic toxicology of acridines. Mutat Res 258:123–160

Gareau DS, Jeon H, Nehal KS, Rajadhyaksha M (2012) Rapid screening of cancer margins in tissue with multimodal confocal microscopy. J Surg Res 178:533–538. doi: 10.1016/j.jss.2012.05.059

Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc Oxford 198:82–87. doi: 10.1046/j.1365-2818.2000.00710.x

Hagen N, Gao L, Tkaczyk TS (2012) Quantitative sectioning and noise analysis for structured illumination microscopy. Opt Express 20:403–413. doi: 10.1364/OE.20.000403

Hsiung PL, Phatak DR, Chen Y, Aguirre AD, Fujimoto JG, Connolly JL (2007) Benign and malignant lesions in the human breast depicted with ultrahigh resolution and three-dimensional optical coherence tomography. Radiology 244:865–874. doi: 10.1148/radiol.2443061536

Jacobs L (2008) Positive margins: the challenge continues for breast surgeons. Ann Surg Oncol 15:1271–1272. doi: 10.1245/s10434-007-9766-0

Karen JK, Gareau DS, Dusza SW, Tudisco M, Rajadhyaksha M, Nehal KS (2009) Detection of basal cell carcinomas in Mohs excisions with fluorescence confocal mosaicing microscopy. Br J Dermatol 160:1242–1250. doi: 10.1111/j.1365-2133.2009.09141.x

Krolenko SA, Adamyan SY, Belyaeva TN, Mozhenok TP (2006) Acridine orange accumulation in acid organelles of normal and vacuolated frog skeletal muscle fibres. Cell Biol Int 30:933–939. doi: 10.1016/j.cellbi.2006.06.017

Kumar V, Abbas A, Fausto N (2005) Robbins and Cotran pathologic basis of disease, 7th edn. Elsevier Saunders, Philadelphia

Millot C, Dufer J (2000) Clinical applications of image cytometry to human tumour analysis. Histol Histopathol 15:1185–1200

Moran MS et al (2014) Society of surgical oncology-American Society for radiation oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. J Clin Oncol 32:1507–1516

Mueller JL et al (2013) Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: application to the detection of residual disease in tumor margins. PLoS ONE 8:e66198. doi: 10.1371/journal.pone.0066198

Muldoon TJ, Pierce MC, Nida DL, Williams MD, Gillenwater A, Richards-Kortum R (2007) Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy. Opt Express 15:16413–16423

Muldoon TJ et al (2010) Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett’s esophagus. J Biomed Opt 15:026027. doi: 10.1117/1.3406386

Nandakumar V et al (2012) Isotropic 3D nuclear morphometry of normal, fibrocystic and malignant breast epithelial cells reveals new structural alterations. PLoS ONE 7:e29230. doi: 10.1371/journal.pone.0029230

Nguyen FT et al (2009) Intraoperative evaluation of breast tumor margins with optical coherence tomography. Cancer Res 69:8790–8796. doi: 10.1158/0008-5472.CAN-08-4340

Nyirenda N, Farkas DL, Ramanujan VK (2011) Preclinical evaluation of nuclear morphometry and tissue topology for breast carcinoma detection and margin assessment. Breast Cancer Res Treat 126:345–354. doi: 10.1007/s10549-010-0914-z

Rakha EA et al (2010) Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res 12:1–12

Rambau PF (2011) Pathology practice in a resource-poor setting: Mwanza, Tanzania. Arch Pathol Lab Med 135:191–193. doi: 10.1043/1543-2165-135.2.191

Schlichenmeyer TC, Wang M, Elfer KN, Brown JQ (2014) Video-rate structured illumination microscopy for high-throughput imaging of large tissue areas Biomed. Opt Express 5:366–377. doi: 10.1364/BOE.5.000366

Sun JG, Adie SG, Chaney EJ, Boppart SA (2013) Segmentation and correlation of optical coherence tomography and X-ray images for breast cancer diagnostics. J Innov Opt Health Sci 6:1350015. doi: 10.1142/S1793545813500156

Tanbakuchi AA, Rouse AR, Udovich JA, Hatch KD, Gmitro AF (2009) Clinical confocal microlaparoscope for real-time in vivo optical biopsies. J Biomed Opt 14:044030. doi: 10.1117/1.3207139

Tanbakuchi AA, Udovich JA, Rouse AR, Hatch KD, Gmitro AF (2010) In vivo imaging of ovarian tissue using a novel confocal microlaparoscope. Am J Obstet Gynecol 202:90.e91–90.e99. doi: 10.1016/j.ajog.2009.07.027

Youden WJ (1950) Index for rating diagnostic tests. Cancer 3:32–35

Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA (2007) Optical coherence tomography: a review of clinical development from bench to bedside. J Biomed Opt 12:051403. doi: 10.1117/1.2793736