Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer

Nature - Tập 529 Số 7585 - Trang 190-194 - 2016
Alaaeddin Alsbaiee1, Brian J. Smith1, Leilei Xiao1, Yuhan Ling2, Damian E. Helbling2, William R. Dichtel1
1Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, New York, USA
2School of Civil and Environmental Engineering, Cornell University, Ithaca, 14853, New York, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006)

Richardson, S. D. & Ternes, T. A. Water analysis: emerging contaminants and current issues. Anal. Chem. 86, 2813–2848 (2014)

Murray, K. E., Thomas, S. M. & Bodour, A. A. Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environ. Pollut. 158, 3462–3471 (2010)

McKinlay, R., Plant, J. A., Bell, J. N. B. & Voulvoulis, N. Endocrine disrupting pesticides: implications for risk assessment. Environ. Int. 34, 168–183 (2008)

Daughton, C. G. & Ternes, T. A. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect. 107, 907–938 (1999)

Órfão, J. J. M. et al. Adsorption of a reactive dye on chemically modified activated carbons — influence of pH. J. Colloid Interf. Sci. 296, 480–489 (2006)

Putra, E. K., Pranowo, R., Sunarso, J., Indraswati, N. & Ismadji, S. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Res. 43, 2419–2430 (2009)

Kovalova, L., Knappe, D. R. U., Lehnberg, K., Kazner, C. & Hollender, J. Removal of highly polar micropollutants from wastewater by powdered activated carbon. Environ. Sci. Pollut. Res. 20, 3607–3615 (2013)

Chiang, P. C., Chang, E. E. & Wu, J. S. Comparison of chemical and thermal regeneration of aromatic compounds on exhausted activated carbon. Water Sci. Technol. 35, 279–285 (1997)

San Miguel, G., Lambert, S. D. & Graham, N. J. D. The regeneration of field-spent granular-activated carbons. Water Res. 35, 2740–2748 (2001)

Morin-Crini, N. & Crini, G. Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers. Prog. Polym. Sci. 38, 344–368 (2013)

Lo Meo, P., Lazzara, G., Liotta, L., Riela, S. & Noto, R. Cyclodextrin–calixarene co-polymers as a new class of nanosponges. Polym. Chem. 5, 4499–4510 (2014)

Crini, G. & Morcellet, M. Synthesis and applications of adsorbents containing cyclodextrins. J. Sep. Sci. 25, 789–813 (2002)

Budd, P. M. et al. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. 230–231 (2004)

Vandenberg, L. N., Hauser, R., Marcus, M., Olea, N. & Welshons, W. V. Human exposure to bisphenol A (BPA). Reprod. Toxicol. 24, 139–177 (2007)

Liang, L. et al. Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies. Front. Environ. Sci. Eng. 9, 16–38 (2015)

Kitaoka, M. & Hayashi, K. Adsorption of bisphenol A by cross-linked β-cyclodextrin polymer. J. Incl. Phenom. Macrocycl. Chem. 44, 429–431 (2002)

Kim, Y.-H., Lee, B., Choo, K.-H. & Choi, S.-J. Selective adsorption of bisphenol A by organic–inorganic hybrid mesoporous silicas. Micropor. Mesopor. Mater. 138, 184–190 (2011)

Kyzas, G. Z., Lazaridis, N. K. & Bikiaris, D. N. Optimization of chitosan and β-cyclodextrin molecularly imprinted polymer synthesis for dye adsorption. Carbohydr. Polym. 91, 198–208 (2013)

Zhou, L.-C. et al. Highly efficient adsorption of chlorophenols onto chemically modified chitosan. Appl. Surf. Sci. 292, 735–741 (2014)

Wan Ngah, W. S., Teong, L. C. & Hanafiah, M. A. K. M. Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr. Polym. 83, 1446–1456 (2011)

Aoki, N., Nishikawa, M. & Hattori, K. Synthesis of chitosan derivatives bearing cyclodextrin and adsorption of p-nonylphenol and bisphenol A. Carbohydr. Polym. 52, 219–223 (2003)

Latch, D. E. et al. Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. Environ. Toxicol. Chem. 24, 517–525 (2005)

Occupational Safety and Health Administration (OSHA) Standard, USA.Toxic and Hazardous Substances: 13 Carcinogens (4-Nitrobiphenyl, etc.). Standard number 1910.1003. http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=10007 (2012)

Ike, M., Chen, M. Y., Danzl, E., Sei, K. & Fujita, M. Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions. Water Sci. Technol. 53, 153–159 (2006)

Benner, J. et al. Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes? Water Res. 47, 5955–5976 (2013)

Kidd, K. A. et al. Collapse of a fish population after exposure to a synthetic estrogen. Proc. Natl Acad. Sci. USA 104, 8897–8901 (2007)

Kostich, M. S., Batt, A. L. & Lazorchak, J. M. Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environ. Pollut. 184, 354–359 (2014)

Oulton, R. L., Kohn, T. & Cwiertny, D. M. Pharmaceuticals and personal care products in effluent matrices: a survey of transformation and removal during wastewater treatment and implications for wastewater management. J. Environ. Monit. 12, 1956–1978 (2010)

Huntscha, S., Singer, H. P., McArdell, C. S., Frank, C. E. & Hollender, J. Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1268, 74–83 (2012)

Bisby, R., Botchway, S., Crisostomo, A., Parker, A. & Scherer, K. Fluorescence lifetime imaging of propranolol uptake in living glial C6 cells. Spectrosc. Int. J. 27, 533–540 (2012)

O’Neil, M. J. (ed.) The Merck Index — An Encyclopedia of Chemicals, Drugs, and Biologicals (Merck and Co., 2006)

Ho, Y. S. & McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)

Liu, H., Cai, X., Wang, Y. & Chen, J. Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Res. 45, 3499–3511 (2011)

García-Zubiri, I. X., González-Gaitano, G. & Isasi, J. R. Sorption models in cyclodextrin polymers: Langmuir, Freundlich, and a dual-mode approach. J. Colloid Interface Sci. 337, 11–18 (2009)