Rapid point-of-care (POC) testing for Hepatitis C antibodies in a very high prevalence setting: persons injecting drugs in Tallinn, Estonia

Harm Reduction Journal - Tập 18 - Trang 1-6 - 2021
Anneli Uusküla1, Ave Talu1, Jürgen Rannap1, David M. Barnes2, Don Des Jarlais2
1Department of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
2School of Global Public Health, New York University, New York, USA

Tóm tắt

Between December 2018 and January of 2019, we evaluated the accuracy of the point-of-care Hepatitis C (HCV) antibody test (POC; OraQuick HCV) used at a community-based needle and syringe exchange program serving persons who inject drugs in Tallinn, Estonia. We compared the results of screening for HCV antibodies by OraQuick (oral swab) and enzyme immunoassay (EIA; blood draw) and assessed test results implications in a high prevalence setting. Findings Of the 100 participants, 88 (88%) had reactive POC test results, and 93 were HCV antibody positive on EIA testing. Sensitivity, specificity and negative predictive value (NPV) for the POC assay with EIA as the relevant reference test were as follows: 94.6% (95% CI 90.0–99.2%), 100% and 58.3% (95% CI 30.4–86.2%). Of the 12 testing, HCV-negative with the POC only 7 (58.3%) were true negatives. Oral swab rapid testing HCV screening in this nonclinical setting was sensitive and specific but had unacceptably low NPV. In high prevalence settings, POC tests with high sensitivity and that directly measure HCV RNA may be warranted.

Tài liệu tham khảo

Han R, Zhou J, François C, Toumi M. Prevalence of hepatitis C infection among the general population and high-risk groups in the EU/EEA: a systematic review update. BMC Infect Dis. 2019;19(1):655. https://doi.org/10.1186/s12879-019-4284-9. Grebely J, Larney S, Peacock A, et al. Global, regional, and country-level estimates of hepatitis C infection among people who have recently injected drugs. Addiction. 2019;114(1):150–66. https://doi.org/10.1111/add.14393. Hellard R, Sacks-Davis JD. Hepatitis C elimination by 2030 through treatment and prevention: think global, act in local networks. J Epidemiol Community Health. 2016;70(12):1151–4. https://doi.org/10.1136/jech-2015-205454. Martin NK, Vickerman P, Dore GJ, et al. Prioritization of HCV treatment in the direct-acting antiviral era: an economic evaluation. J Hepatol. 2016;65(1):17–25. https://doi.org/10.1016/j.jhep.2016.02.007. Mason LMK, Veldhuijzen IK, Duffell E, et al. Hepatitis B and C testing strategies in healthcare and community settings in the EU/EEA: a systematic review. J Viral Hepat. 2019;26(12):1431–53. https://doi.org/10.1111/jvh.13182. Hickman M, Dillon JF, Elliott L, et al. Evaluating the population impact of hepatitis C direct acting antiviral treatment as prevention for people who inject drugs (EPIToPe)—a natural experiment (protocol). BMJ Open. 2019;9(9):e029538. https://doi.org/10.1136/bmjopen-2019-029538. Jack K, Willott S, Manners J, et al. Clinical trial: a primary-care-based model for the delivery of anti-viral treatment to injecting drug users infected with hepatitis C. Aliment Pharmacol Ther. 2009;29(1):38–45. https://doi.org/10.1111/j.1365-2036.2008.03872.x. van Santen DK, van der Helm JJ, Lindenburg K, et al. HIV and hepatitis C treatment uptake among people who use drugs participating in the Amsterdam Cohort Studies, 1985–2015. Int J Drug Policy. 2017;47:95–101. https://doi.org/10.1016/j.drugpo.2017.05.026. Beckwith CG, Kurth AE, Bazerman LB, et al. A pilot study of rapid hepatitis C virus testing in the Rhode island Department of Corrections. J Public Health (Oxf). 2016;38(1):130–7. https://doi.org/10.1093/pubmed/fdv023. Drobnik AC, Judd D, Banach J, et al. Public health implications of rapid hepatitis C screening with an oral swab for community-based organizations serving high-risk populations. Am J Public Health. 2011;101(11):2151–5. https://doi.org/10.2105/AJPH.2011.300251. Jewett A, Smith BD, Garfein RS, et al. Field-based performance of three pre-market rapid hepatitis C virus antibody assays in STAHR (Study to Assess Hepatitis C Risk) among young adults who inject drugs in San Diego. CA J Clin Virol. 2012;54(3):213–7. https://doi.org/10.1016/j.jcv.2012.04.003. Williams B, Howell J, Doyle J, et al. Point-of-care hepatitis C testing from needle and syringe programs: an Australian feasibility study. Int J Drug Policy. 2019;72:91–8. https://doi.org/10.1016/j.drugpo.2019.05.012. Latham NH, Pedrana A, Doyle JS, et al. Community-based, point-of-care hepatitis C testing: perspectives and preferences of people who inject drugs. J Viral Hepat. 2019;26(7):919–22. https://doi.org/10.1111/jvh.13087. Uuskula A, Kalikova N, Zilmer K, et al. The role of injection drug use in the emergence of Human Immunodeficiency Virus infection in Estonia. Int J Infect Dis. 2002;6(1):23–7. https://doi.org/10.1016/s1201-9712(02)90131-1. Tavitian-Exley I, Maheu-Giroux M, Platt L, et al. Differences in risk behaviours and HIV status between primary amphetamines and opioid injectors in Estonia and Russia. Int J Drug Policy. 2018;53:96–105. https://doi.org/10.1016/j.drugpo.2017.11.010. Centers for Disease Control and Prevention. National HIV Behavioral Surveillance System in Injecting Drug Users—Round 3: Operations Manual. May 25, 2012. https://www.cdc.gov/hiv/statistics/systems/nhbs/operations.html. Accessed on June 4, 2020. Tang W, Chen W, Amini A, et al. Diagnostic accuracy of tests to detect Hepatitis C antibody: a meta-analysis and review of the literature. BMC Infect Dis. 2017;17(Suppl 1):695. https://doi.org/10.1186/s12879-017-2773-2. Degenhardt L, Peacock A, Colledge S, et al. Global prevalence of injecting drug use and sociodemographic characteristics and prevalence of HIV, HBV, and HCV in people who inject drugs: a multistage systematic review. Lancet Glob Health. 2017;5(12):e1192–207. https://doi.org/10.1016/S2214-109X(17)30375-3. Implementing HIV testing in nonclinical settings a guide for HIV testing providers. CDC 2016. https://www.cdc.gov/hiv/pdf/testing/cdc_hiv_implementing_hiv_testing_in_nonclinical_settings.pdf . Accessed on June 4, 2020. Crucitti T, Taylor D, Beelaert G, et al. Performance of a rapid and simple HIV testing algorithm in a multicenter phase III microbicide clinical trial. Clin Vaccine Immunol. 2011;18(9):1480–5. https://doi.org/10.1128/CVI.05069-11. Everett DB, Baisley K, Changalucha J. Suitability of simple human immunodeficiency virus rapid tests in clinical trials in community-based clinic settings. J Clin Microbiol. 2009;47(4):1058–62. https://doi.org/10.1128/JCM.01998-08/. Waheed U, Hayat K, Ahmad B, et al. Evaluation of HIV/AIDS diagnostics kits and formulation of a testing strategy for Pakistan. J Clin Virol. 2013;56(4):367–9. https://doi.org/10.1016/j.jcv.2012.12.012. Fourati S, Feld JJ, Chevaliez S, et al. Approaches for simplified HCV diagnostic algorithms. J Int AIDS Soc. 2018;21(Suppl 2):e25058. https://doi.org/10.1002/jia2.25058. Parry JV, Easterbrook P, Sands AR, et al. One or two serological assay testing strategy for diagnosis of HBV and HCV infection? The use of predictive modelling. BMC Infect Dis. 2017;17(Suppl 1):705. https://doi.org/10.1186/s12879-017-2774-1. Wu SZ, Wei JL, Xu B, et al. Detection and analysis of hepatitis C virus in HIV-infected patients in the Guangxi province of China. Exp Ther Med. 2017;13(3):917–23. https://doi.org/10.3892/etm.2017.4067. Juniastuti TU, Nasronudin LA, et al. High rate of seronegative HCV infection in HIV-positive patients. Biomed Rep. 2014;2(1):79–84. https://doi.org/10.3892/br.2013.188. Smith BD, Drobeniuc J, Jewett A, et al. Evaluation of Three rapid screening assays for detection of antibodies to hepatitis C virus. J Inf Dis. 2011;204(6):825–31. https://doi.org/10.1093/infdis/jir422. Trooskin SB, Poceta J, Towey CM, et al. Results from a geographically focused, community-based HCV screening, linkage-to-care and patient navigation program. J Gen Intern Med. 2015;30(7):950–7. Morano JP, Zelenev A, Lombard A, et al. Strategies for hepatitis C testing and linkage to care for vulnerable populations: point-of-care and standard HCV testing in a mobile medical clinic. J Community Health. 2014;39(5):922–34. https://doi.org/10.1007/s10900-014-9932-9. Hayes B, Briceno A, Asher A, et al. Preference, acceptability and implications of the rapid hepatitis C screening test among high-risk young people who inject drugs. BMC Public Health. 2014;14:645. https://doi.org/10.1186/1471-2458-14-645. Barocas JA, Linas BP, Kim AY, et al. Acceptability of rapid point-of-care hepatitis C tests among people who inject drugs and utilize syringe-exchange programs. Open Forum Infect Dis. 2016;3(2):ofw075. https://doi.org/10.1093/ofid/ofw075. Smith BD, Teshale E, Jewett A, et al. Performance of premarket rapid hepatitis C virus antibody assays in 4 national human immunodeficiency virus behavioral surveillance system sites. Clin Infect Dis. 2011;53(8):780–6. https://doi.org/10.1093/cid/cir499. van Tilborg M, Al Marzooqi SH, Wong WWL, et al. HCV core antigen as an alternative to HCV RNA testing in the era of direct-acting antivirals: retrospective screening and diagnostic cohort studies. Lancet Gastroenterol Hepatol. 2018;3(12):856–64. https://doi.org/10.1016/S2468-1253(18)30271-1. Millbourn C, Lybeck C, Psaros Einberg A, et al. Anti-HCV prevalence and risk factor-based screening for hepatitis C in pregnant women and their partners in Sweden. Infect Dis (Lond). 2020;52(11):776–85. https://doi.org/10.1080/23744235.2020.1784456. Harris AM, Chokoshvili O, Biddle J, et al. An evaluation of the hepatitis C testing, care and treatment program in the country of Georgia’s corrections system, December 2013–April 2015. BMC Public Health. 2019;19(Suppl 3):466. https://doi.org/10.1186/s12889-019-6783-4. Kinkel HT, Karmacharya D, Shakya J, et al. Prevalence of HIV, hepatitis B and C infections and an assessment of HCV-genotypes and two IL28B SNPs among people who inject drugs in three regions of Nepal. PLoS ONE. 2015;10(8):e0134455. https://doi.org/10.1371/journal.pone.0134455. Lidman C, Norden L, Kåberg M, et al. Hepatitis C infection among injection drug users in Stockholm Sweden: prevalence and gender. Scand J Infect Dis. 2009;41(9):679–84. https://doi.org/10.1080/00365540903062143.