Tổn thương nhanh chóng do nhiệt độ cao ở thực vật

Journal of Plant Biology - Tập 60 - Trang 298-305 - 2017
Gurpreet Kaur Goraya1, Balraj Kaur1, Bavita Asthir1, Shashi Bala1, Gurpreet Kaur1, Muhammad Farooq1
1Department of Biochemistry, Punjab Agricultural University, Ludhiana, India

Tóm tắt

Biến đổi khí hậu toàn cầu, đặc biệt là nhiệt độ cao, dự đoán sẽ có ảnh hưởng tiêu cực chung đến sự phát triển và tăng trưởng của thực vật, có thể dẫn đến tổn thất thảm khốc về năng suất cây trồng. Nhiệt độ cao có ảnh hưởng rộng rãi đến thực vật liên quan đến các quá trình sinh lý, sinh hóa của thực vật như quang hợp, hô hấp, quan hệ nước, và các con đường điều hòa gen. Tổn thương gây ra cho các mô thực vật trong điều kiện cực đoan này làm suy yếu màng tế bào, dẫn đến sự sản xuất các gốc oxy phản ứng tấn công vào các vị trí chính như thiết bị quang hợp, các hệ thống quang hợp, chủ yếu là hệ thống quang hợp II (PSII) và các con đường hô hấp. Để đối phó với sự tăng nhiệt độ, thực vật sở hữu một số cơ chế thích ứng, tránh né hoặc thích nghi. Ngoài các cơ chế chịu đựng chính, thực vật còn sử dụng các bơm ion, protein, các chất osmoprotectant, chất chống oxy hóa và nhiều yếu tố khác tham gia vào các chuỗi tín hiệu và kiểm soát phiên mã được kích hoạt để bù đắp cho những thay đổi sinh hóa và sinh lý do stress gây ra. Bài báo này tổng hợp những phát hiện gần đây về các tổn thương do nhiệt độ cao gây ra và phản ứng ở các mức độ tế bào, ti thể và toàn bộ thực vật.

Từ khóa

#biến đổi khí hậu #nhiệt độ cao #tổn thương thực vật #quang hợp #cơ chế chịu đựng

Tài liệu tham khảo

Ahmad P, Prasad MNV (2012) Environmental adaptations and stress tolerance of plants in the era of climate change. New York, NY: Springer; p. 297–324 Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: An overview. Photosynthetica 51:163–190 Asthir B, Rai PK, Bains NS, Sohu VS (2012) Genotypic Variation for High Temperature Tolerance in Relation to Carbon Partitioning and Grain Sink Activity in Wheat Am J Plant Sci 3:381–390 Bansal M, Kukreja K, Sunita S, Dudeja SS (2014) Symbiotic effectivity of high temperature tolerant mungbean (Vignaradiata) rhizobia under different temperature conditions. Int J Curr Microbiol Appl Sci 3:807–821 Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38 Benjamin PT, Jonathan S, Weissman JS (2004) Oxidative protein folding in eukaryotes mechanisms and consequences. J Cell Biol 164:341–346 Bindumadhava H, Nair RM, Easdown W (2015) Physiology of mungbean accessions grown under saline and high temperature conditions. AVRDC-Annual report, No.74199. Tainan: Weihai Shanhua Carpet Group Co., Ltd., 1–46 Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273 Bülow L, Brill Y, Hehl R (2010) AthaMap-assisted transcription factor target gene identification in Arabidopsis thaliana Database (Oxford). baq034 Chakraborty U, Pradhan D (2011) High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments. J Plant Interact 6:43–52 Cossani CM, Reynold MP (2012) Physiological traits for improving heat tolerance in wheat. Plant Physiol 160:1710–1718 Czarnecka E, Key JL, Gurley WB (1989) Regulatory domains of the Gmhsp 17.5-E heat shock promoter of soybean: a mutational analysis. Mol Cell Biol 9:3457–3463 Delphine D, Declan C, Navin R, Jeff P, Rachel W (2014) Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett 9:1–13 Doroszewski A, Górski T, Kozyra J (2015) Atmospheric moisture controls far-red irradiation: a probable impact on the phytochrome. Int. Agrophys 29:283–289 Downs CA, McDougall KE, Woodley CM, Fauth JE, Richmond RH, Kushmaro A, Gibb SW, Loya Y, Ostrande KR, Kramarsky-Winter E (2013) Heat-Stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS One 8:771–773 Driedonks N, Xu J, Peters JL, Park S, Rieu I (2015) Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front Plant Sci 6:999 Du GD, Lü DG, Zhao L, Wang SS, Cai Q (2011) Effects of high temperature on leaf photosynthetic characteristics and photosystem II photochemical activity of kernel-used apricot. Ying Yong Sheng Tai Xue Bao 22:701–706 Evandro NS, Sérgio LF, Adilton VF, Rafael VR, Ricardo AV, Joaquim AGS (2010) Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. J Plant Physiol 167:1157–1164 Feng B, Liu P, Li G, Dong ST, Wang FH, Kong LA, Zhang JW (2014) Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. J Agro Crop Sci ISSN:1931–2250 Gall H L, Philippe F, Domon J M, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants 4:112–166 Gallie DR, Pitto L (1996) Translational control during recovery from heat shock in the absence of heat shock proteins. Biochem Biophys Res Commun 227:462–467 Gao X, Cox KL, Ping He (2014) Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity. Plants (Basel) 3:160–176 Greer DH, Weedon MM (2012) Modelling photosynthetic responses to temperature of grapevine (Vitisvinifera cv. Semillon) leaves on vines grown in ahotclimate. Plant Cell Environ 35:1050–1064 Harsant J, Pavlovic L, Chiu G, Sultmanis S, Sage TL (2013) High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. J Exp Bot 64:2971–2983 Hasanuzzaman M, Nahar K, Mahabub A, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684 Hemantaranjan A, Bhanu AN, Singh MN, Yadav DK, Patel PK, Singh R, Katiyar D (2014) Heat stress responses and thermotolerance. Adv Plants Agri Res 3:1–10 Hui S, Xiangbin Z, Fangfang Z, Yanmei W, Bingxiao Y, Qun L, Genyun C, Bizeng M, Jianjun W, Yangsheng L, Guoying X, Yuke H, Han X, Jianming L, Zuhua H (2015) Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nature biotechnology. doi:10.1038/nbt.3321 Hurkman WJ, Vensel WH, Tanaka CK, Whitehand L, Altenbach SB (2009) Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain. J Cereal Sci 49:12–23 Kamila L, Bokszczanin, Fragkostefanakis, S (2013) Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci 4:315 Kapoor D, Sharma R, Handa N, Kaur H, Rattan A, Yadav P, Gautam V, Kaur R, Bhardwaj R (2015) Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Front Environ Sci 3:13 Karuppanapandian T, Moon J C, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. AJCS 5:709–725 Kepova KD, Holzer R, Stoilova LS, Feller U (2005) Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase, rubisco binding protein and rubisco activase in wheat leaves. Biol Plant 49:521–525 Kim DO, Jeong SW, Lee CY (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81:321–326 Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato nadph oxidase. Plant Cell 19:1065–1080 Kumar K, Rao IU (2013) Indirect injuries include inactivation of enzymes, inhibition of protein synthesis, protein degradation and loss of membrane integrity. Trends Biosci 6:5–13 Kumar S, Kaur R, Kaur N, Bhandhari K, Kaushal N, Gupta K, Bains TS, Nayyar H (2011) Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiol Plant 33:2091–2101 Li M, Ji L, Yang X, Meng Q, Guo S (2012) The protective mechanisms of CaHSP26 in transgenic tobacco to alleviate photoinhibition of PSII during chilling stress. Plant Cell Rep 31:1969–1979 Lismont C, Nordgren M, Veldhoven PPV, Fransen M (2015) Redox interplay between mitochondria and peroxisomes. Front Cell Dev Biol 3:35 Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG (2008) The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J 55:760–773 Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Sci 333:616–620 Mariano CC, Matthew PR (2012) Physiological traits for improving heat tolerance in wheat. Plant Physiol 160:1710–1718 Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125 Momcilovic I, Zoran RZ (2007) Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. J Plant Physiol 164:90–99 Muhammad F, Helen B, Jairo AP, Kadambot H M, Siddique (2011) Heat Stress in wheat during reproductive and grain-filling phases. Critical Reviews Plant Sci 30:1–17 Nordine C, Robert JJ (1995) Heat stress effects on sink activity of developing maize kernels grown in vitro. Physiol Planta 95:59–66 Obata T, Witt S, Lisec J, Palacios RN, Florez-Sarasa I, Yousfi S, Luis AJ, Cairns JE, Fernie AR (2015) Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol 169:2665–2683 Omae H, Kumar A, Shono M (2012) Adaptation to high temperature and water deficit in the common bean (Phaseolus vulgaris L.) during the reproductive period. J Bot doi:10.1155/2012/803413 Parre E, Mohamed AG, Leprince AS, Thiery L, Lefebvre D, Bordenave M, Richard L, Mazars C, Abdelly C, Savouré A (2007) Calcium signaling via phospholipase c is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. Plant Physiol 144:1503–1512 Parrotta L, Faleri C, Cresti M, Cai G (2016) Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes. Planta 243:43–63 Philippa B, Brendan F, Alison MS, Cristobal U (2015) Wheat grain filling is limited by grain filling capacity rather than the duration of flag leaf photosynthesis: a case study using nam rnai plants. PLoS one 10:0134947 Piramila BHM, Prabha AL, Nandagopalan V, Stanley AL (2012) Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of blackgram. Int J Pharm. Phytopharmacol. Res 1:194–202 Prieto-Dapena P, Castaño R, Almoguera C, Jordano J (2006) Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol 142:1102–1112 Raja SP, Duroy AN, Joseph CK, Alberto P, Syamkumar SP (2012) Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biol 12–39 Ranga ZW, Jagadish SVK, Zhoua QM, Craufurd PQ, Heuer S (2011) Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environ Exper Bot 70:58–65 Reddy ASN, Ali GS, Celesnik H, Irene S (2011) Day coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032 Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106 Schöffl F, Prandl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki, K, Yamaguchi-Shinozaki, K. (Eds.), Molecular responses to cold, drought, heat and salt stress in higher plants. R.G. Landes Co., Austin, Texas, pp. 81–98 Scott AM, McAdam Brodribb TJ (2014) Separating active and passive influences on stomatal control of transpiration. Plant Physiol 164:1578–1586 Soll J, Schleiff E (2004) Protein import into chloroplasts. Nature Reviews Mol Cell Biol 5:198–208 Song Y, Chen Q, Ci D, Shao X, Zhang D (2014) Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol 14:111 Tan W, Meng Q W, Brestic M, Olsovska K, Yang X (2011) Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J Plant Physiol 168:2063–2071 Teixeira EI, Fischer G, Van VH, Walter C, Ewert F (2013) Global hotspots of heat stress on agricultural crops due to climate change. Agric Forest Meteorol 170:206–215 Telfer A (2014) Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of β-carotene. Plant Cell Physiol 55:1216–1223 Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633 Trivedi AK (2015) Adaptations and mechanisms of heat stress tolerance of plants. Acad Res J Agric Sci Res 3:151–160 Villegas C, Alfaro K, Ammar M M, Catedra J, Crossa LF, Garcıa del M, Royo C (2015) Daylength, temperature and solar radiation effects on the phenology and yield formation of spring durum wheat. J Agro Crop Sci ISSN 0931–2250 Virdi AS, Singh S, Singh P (2015) Abiotic stress responses in plants: roles of calmodulin-regulated proteins. Front Plant Sci 6:809 Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An overview. Environ Exper Bot 61:199–223 Wiberley-Bradford AE, Busse JS, Jiming J, Bethke PC (2014) Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of katahdin. BMC Res Notes 7:801 Yamashita A, Nijo N, Pospíšil P, Morita N, Takenaka D, Aminaka R, Yamamoto Y (2008) Reactive oxygen species are responsible for the damage to photosystem ii under moderate heat stress. J Biol Chem 17:283:28380–28391 Yang J, Sears RG, Gill BS, Paulsen GM (2002) Genotypic differences in utilization of assimilate sources during maturation of wheat under chronic heat and heat shock stresses Utilization of assimilate sources by wheat under heat stresses. Euphytica 125:179–188 Zheng SZ, Liu YL, Li B, Shang ZL, Zhou RG, Sun DY (2012) Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Plant J 69:689–700