Rapid identification of main antibacterial components from New Zealand ‘Hass’ avocado peel hexane extract

Current Plant Biology - Tập 35 - Trang 100288 - 2023
Danxia Shi1,2, Wenliang Xu1, Marie Wong3, David G. Popovich1
1School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
2Alpha-Massey Natural Nutraceutical Research Centre, Massey University, Palmerston North 4442, New Zealand
3School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand

Tài liệu tham khảo

Rodríguez-Carpena, 2011, Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties, J. Agric. Food Chem., 59, 5625, 10.1021/jf1048832 Bost, 2013, 10 Figueroa, 2021, Functional ingredient from avocado peel: microwave-assisted extraction, characterization and potential applications for the food industry, Food Chem., 352, 10.1016/j.foodchem.2021.129300 Kosińska, 2012, Phenolic compound profiles and antioxidant capacity of Persea americana Mill. peels and seeds of two varieties, J. Agric. Food Chem., 60, 4613, 10.1021/jf300090p Wang, 2010, Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars, Food Chem., 122, 1193, 10.1016/j.foodchem.2010.03.114 Cardoso, 2017, Antibacterial activity of avocado extracts (Persea americana Mill.) against Streptococcus agalactiae, Phyton, Int. J. Exp. Bot., 85, 218 C. Hernandez-Brenes, M.I. Garcia-Cruz, J.A. Gutierrez-Uribe, J.A. Benavides-Lozano, D.G. Rodriguez-Sanchez, Antimicrobial, antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds, Google Patents, 2013. Yusof, 2020, Phytochemicals and cytotoxicity of Quercus infectoria ethyl acetate extracts on human cancer cells, Trop. life Sci. Res., 31, 69, 10.21315/tlsr2020.31.1.5 Oh, 2022, Application of the MTT-based colorimetric method for evaluating bacterial growth using different solvent systems, LWT, 153, 10.1016/j.lwt.2021.112565 Grela, 2018, Current methodology of MTT assay in bacteria–a review, Acta Histochem., 120, 303, 10.1016/j.acthis.2018.03.007 Foongladda, 2002, Rapid and simple MTT method for rifampicin and isoniazid susceptibility testing of Mycobacterium tuberculosis, Int. J. Tuberc. Lung Dis., 6, 1118 Montoro, 2005, Comparative evaluation of the nitrate reduction assay, the MTT test, and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis, J. Antimicrob. Chemother., 55, 500, 10.1093/jac/dki023 Abate, 1998, Evaluation of a colorimetric assay based on 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis, Int. J. Tuberc. Lung Dis., 2, 1011 Brambilla, 2014, The influence of antibacterial toothpastes on in vitro Streptococcus mutans biofilm formation: a continuous culture study, Am. J. Dent., 27, 160 Mandal, 2013, Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties, Asian Pac. J. Trop. Biomed., 3, 960, 10.1016/S2221-1691(13)60186-0 Schulz, 1980, Analysis of hydroxybenzoic and hydroxycinnamic acids in plant material: I. Sample preparation and thin-layer chromatography, J. Chromatogr. A, 195, 85, 10.1016/S0021-9673(00)81545-9 Jesionek, 2015, TLC-direct bioautography and LC/MS as complementary methods in identification of antibacterial agents in plant tinctures from the Asteraceae family, J. AOAC Int., 98, 857, 10.5740/jaoacint.SGE2-Choma Marini-Bettolo, 1981, Plant screening by chemical and chromatographic procedures under field conditions, J. Chromatogr. A, 213, 113, 10.1016/S0021-9673(00)80639-1 Kucharska, 2010, A review of chromatographic methods for determination of synthetic food dyes, Talanta, 80, 1045, 10.1016/j.talanta.2009.09.032 Choma, 2015, TLC-direct bioautography as a high throughput method for detection of antimicrobials in plants, Chromatography, 2, 225, 10.3390/chromatography2020225 Dehghan, 2020, Bioassay screening of 12 Iranian plants and detection of antibacterial compounds from Heracleum persicum using a TLC bioautography method, J. Liq. Chromatogr. Relat. Technol., 43, 381, 10.1080/10826076.2020.1725557 Marston, 2011, Thin-layer chromatography with biological detection in phytochemistry, J. Chromatogr. A, 1218, 2676, 10.1016/j.chroma.2010.12.068 Suleiman, 2010, Detection of antimicrobial compounds by bioautography of different extracts of leaves of selected South African tree species, Afr. J. Tradit., Complement. Altern. Med., 7, 10.4314/ajtcam.v7i1.57269 Deurenberg, 2008, The evolution of Staphylococcus aureus, Infect., Genet. Evol., 8, 747, 10.1016/j.meegid.2008.07.007 Betoni, 2006, Junior, Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases, Mem. do Inst. Oswaldo Cruz, 101, 387, 10.1590/S0074-02762006000400007 Bazargani, 2016, Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms, Food Control, 61, 156, 10.1016/j.foodcont.2015.09.036 Aqil, 2005, Effect of certain bioactive plant extracts on clinical isolates of β‐lactamase producing methicillin resistant Staphylococcus aureus, J. Basic Microbiol.: Int. J. Biochem. Physiol. Genet. Morphol. Ecol. Microorg., 45, 106, 10.1002/jobm.200410355 D. Shi, W. Xu, P. Balan, M. Wong, W. Chen, D.G. Popovich, In Vitro Antioxidant Properties of New Zealand Hass Avocado Byproduct (Peel and Seed) Fractions, ACS Food Sci. Technol. (2021). Horváth, 2010, Antimicrobial activity of essential oils: the possibilities of TLC–bioautography, Flavour Fragr. J., 25, 178, 10.1002/ffj.1993 Cahoon, 2020, Plant unusual fatty acids: learning from the less common, Curr. Opin. Plant Biol., 55, 66, 10.1016/j.pbi.2020.03.007 van de Loo, 2018, Unusual fatty acids, Lipid Metab. Plants, 91, 10.1201/9781351074070-4 Hou, 2009, Biotechnology for fats and oils: new oxygenated fatty acids, N. Biotechnol., 26, 2, 10.1016/j.nbt.2009.05.001 Kachroo, 2001, A fatty acid desaturase modulates the activation of defense signaling pathways in plants, Proc. Natl. Acad. Sci., 98, 9448, 10.1073/pnas.151258398 Baysal, 2007, Lipoxygenase in fruits and vegetables: a review, Enzym. Microb. Technol., 40, 491, 10.1016/j.enzmictec.2006.11.025 Cahoon, 1997, Redesign of soluble fatty acid desaturases from plants for altered substrate specificity and double bond position, Proc. Natl. Acad. Sci., 94, 4872, 10.1073/pnas.94.10.4872 Lee, 2016, Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances, Nutrients, 8, 23, 10.3390/nu8010023 Viswanath, 2020, Plant lipoxygenases and their role in plant physiology, J. Plant Biol., 63, 83, 10.1007/s12374-020-09241-x Brenner, 1966, Effect of saturated and unsaturated fatty acids on the desaturation in vitro of palmitic, stearic, oleic, linoleic, and linolenic acids, J. Biol. Chem., 241, 5213, 10.1016/S0021-9258(18)96419-7 Poneleit, 1965, Inheritance of linoleic and oleic acids in maize, Science, 147, 1585, 10.1126/science.147.3665.1585 Hamberg, 1965, On the specificity of the lipoxidase catalyzed oxygenation of unsaturated fatty acids, Biochem. Biophys. Res. Commun., 21, 531, 10.1016/0006-291X(65)90517-6 Streckert, 1975, Conversion of linoleic acid hydroperoxide by soybean lipoxygenase in the presence of guaiacol: identification of the reaction products, Lipids, 10, 847, 10.1007/BF02532331 Pedreschi, 2016, Impact of postharvest ripening strategies on ‘Hass’ avocado fatty acid profiles, S. Afr. J. Bot., 103, 32, 10.1016/j.sajb.2015.09.012 Osondu, 2022, Coating properties, resistance response, molecular mechanisms and anthracnose decay reduction in green skin avocado fruit (‘Fuerte’) coated with chitosan hydrochloride loaded with functional compounds, Postharvest Biol. Technol., 186, 10.1016/j.postharvbio.2021.111812 Madi, 2003, Stress on avocado fruits regulates Δ9-stearoyl ACP desaturase expression, fatty acid composition, antifungal diene level and resistance to Colletotrichum gloeosporioides attack, Physiol. Mol. Plant Pathol., 62, 277, 10.1016/S0885-5765(03)00076-6 Ouattara, 1997, Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms, Int. J. Food Microbiol., 37, 155, 10.1016/S0168-1605(97)00070-6 Fischer, 2012, Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria, Antimicrob. Agents Chemother., 56, 1157, 10.1128/AAC.05151-11 Jacob, 1963, On the regulation of DNA replication in bacteria, 329 Desbois, 2010, Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential, Appl. Microbiol. Biotechnol., 85, 1629, 10.1007/s00253-009-2355-3 Zhang, 2008, Membrane lipid homeostasis in bacteria, Nat. Rev. Microbiol., 6, 222, 10.1038/nrmicro1839 Pohl, 2011, Antifungal free fatty acids: a review, 3, 61 Bratt, 2010, Oral mucosal lipids: antibacterial activity and induction of ultrastructural damage, J. Dent. Res, 89, 679 Sucharitha, 2010, Antimicrobial properties of chilli lipoxygenase products, Afr. J. Microbiol. Res., 4, 748 Reverberi, 2010, Lipoperoxidation affects ochratoxin A biosynthesis in Aspergillus ochraceus and its interaction with wheat seeds, Appl. Microbiol. Biotechnol., 85, 1935, 10.1007/s00253-009-2220-4 CHIPLEY, 1981, Inhibition of Aspergillus growth and extracellular aflatoxin accumulation by sorbic acid and derivatives of fatty acids, J. Food Saf., 3, 109, 10.1111/j.1745-4565.1981.tb00415.x Ferreira, 2022, From by-product to functional ingredient: Incorporation of avocado peel extract as an antioxidant and antibacterial agent, Innov. Food Sci. Emerg. Technol., 80, 10.1016/j.ifset.2022.103116 Trujillo-Mayol, 2020, Fractionation and hydrolyzation of avocado peel extract: improvement of antibacterial activity, Antibiotics, 10, 23, 10.3390/antibiotics10010023