Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

Review of Scientific Instruments - Tập 84 Số 9 - 2013
Kenneth Gotlieb1,2,3, Z. Hussain4,2,5, Aaron Bostwick4,2,5, Alessandra Lanzara4,2,6, Chris Jozwiak4,2,5
12Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
23Department of Physics, University of California, Berkeley, California 94720, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
3University of California 1 Graduate Group in Applied Science and Technology, , Berkeley, California 94720, USA
41Graduate Group in Applied Science and Technology, University of California, Berkeley, California 94720, USA
5Lawrence Berkeley National Laboratory 2 Advanced Light Source, , Berkeley, California 94720, USA
6Lawrence Berkeley National Laboratory 3 Department of Physics, , Berkeley, California 94720, USA and Materials Sciences Division, , Berkeley, California 94720, USA

Tóm tắt

A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

Từ khóa


Tài liệu tham khảo

1984, Phys. Rev. Lett., 52, 2285, 10.1103/PhysRevLett.52.2285

2002, Phys. Rev. B, 65, 212409, 10.1103/PhysRevB.65.212409

2009, Phys. Rev. Lett., 103, 267203, 10.1103/PhysRevLett.103.267203

2002, Phys. Rev. Lett., 89, 216802, 10.1103/PhysRevLett.89.216802

2004, Phys. Rev. B, 69, 241401, 10.1103/PhysRevB.69.241401

2007, Phys. Rev. B, 76, 153305, 10.1103/PhysRevB.76.153305

2008, Phys. Rev. Lett., 100, 057601, 10.1103/PhysRevLett.100.057601

2008, Phys. Rev. Lett., 101, 157601, 10.1103/PhysRevLett.101.157601

2008, Phys. Rev. Lett., 101, 256601, 10.1103/PhysRevLett.101.256601

2012, Phys. Rev. Lett., 108, 066808, 10.1103/PhysRevLett.108.066808

2009, Nature (London), 460, 1101, 10.1038/nature08234

2010, Phys. Rev. B, 81, 041309, 10.1103/PhysRevB.81.041309

2010, Phys. Rev. B, 82, 155309, 10.1103/PhysRevB.82.155309

2011, Science, 332, 560, 10.1126/science.1201607

2011, Phys. Rev. Lett., 106, 216803, 10.1103/PhysRevLett.106.216803

2011, Phys. Rev. Lett., 106, 257004, 10.1103/PhysRevLett.106.257004

2011, Phys. Rev. B, 84, 165113, 10.1103/PhysRevB.84.165113

2012, Phys. Rev. Lett., 109, 166802, 10.1103/PhysRevLett.109.166802

2012, Phys. Rev. B, 86, 195304, 10.1103/PhysRevB.86.195304

2006, Rev. Sci. Instrum., 77, 013101, 10.1063/1.2162752

2008, Rev. Sci. Instrum., 79, 123117, 10.1063/1.3058757

2008, Rev. Sci. Instrum., 79, 033905, 10.1063/1.2868781

2009, Rev. Sci. Instrum., 80, 043904, 10.1063/1.3115213

2009, New J. Phys., 11, 125008, 10.1088/1367-2630/11/12/125008

2010, Rev. Sci. Instrum., 81, 095101, 10.1063/1.3480542

2010, Rev. Sci. Instrum., 81, 035104, 10.1063/1.3342120

2011, Rev. Sci. Instrum., 82, 103302, 10.1063/1.3648102

2011, Phys. Rev. Lett., 107, 207601, 10.1103/PhysRevLett.107.207601

2013, Ultramicroscopy, 130, 63, 10.1016/j.ultramic.2013.03.017

2010, Rev. Sci. Instrum., 81, 053904, 10.1063/1.3427223

2002, J. Electron Spectrosc. Relat. Phenom., 124, 263, 10.1016/S0368-2048(02)00058-0

2006, Phys. Rev. Lett., 96, 017005, 10.1103/PhysRevLett.96.017005

2007, Rev. Sci. Instrum., 78, 053905, 10.1063/1.2722413

2008, Rev. Sci. Instrum., 79, 023106, 10.1063/1.2839010

2008, Rev. Sci. Instrum., 79, 023105, 10.1063/1.2835901

2008, Phys. Rev. Lett., 100, 107002, 10.1103/PhysRevLett.100.107002

2010, Phys. Rev. Lett., 104, 207002, 10.1103/PhysRevLett.104.207002

2011, Phys. Rev. Lett., 107, 207602, 10.1103/PhysRevLett.107.207602

2012, Proc. Natl. Acad. Sci. U.S.A., 109, 3694, 10.1073/pnas.1115555109

2008, Appl. Phys. A, 91, 211, 10.1007/s00339-008-4422-5

2007, Phys. Rev. Lett., 99, 197001, 10.1103/PhysRevLett.99.197001

2008, Science, 321, 1649, 10.1126/science.1160778

2011, Nat. Phys., 7, 805, 10.1038/nphys2027

2011, Nature (London), 471, 490, 10.1038/nature09829

2012, Phys. Rev. Lett., 108, 097002, 10.1103/PhysRevLett.108.097002

2012, Phys. Rev. Lett., 108, 117403, 10.1103/PhysRevLett.108.117403

2012, Nano Lett., 12, 3532, 10.1021/nl301035x

2012, Phys. Rev. B, 86, 085139, 10.1103/PhysRevB.86.085139

2012, Synchrotron Radiat. News, 25, 12, 10.1080/08940886.2012.720160

2012, Phys. Rev. Lett., 109, 127401, 10.1103/PhysRevLett.109.127401

2012, Science, 336, 1137, 10.1126/science.1217423

2002, Rev. Sci. Instrum., 73, 3867, 10.1063/1.1512342

2002, Rev. Sci. Instrum., 73, 1229, 10.1063/1.1430547

1992, Rev. Sci. Instrum., 63, 1635, 10.1063/1.1143371

1998, Rev. Sci. Instrum., 69, 3913, 10.1063/1.1149199

2007, Rev. Sci. Instrum., 78, 025107, 10.1063/1.2536677

2008, Rev. Sci. Instrum., 79, 083303, 10.1063/1.2949877

2011, Appl. Phys. Lett., 99, 032505, 10.1063/1.3611648

2013, Ultramicroscopy, 130, 70, 10.1016/j.ultramic.2013.02.022

2008, Nat. Phys., 4, 210, 10.1038/nphys833

2003, Photoelectron Spectroscopy: Principles and Applications, 3rd ed.

1979, Surf. Interface Anal., 1, 2, 10.1002/sia.740010103

1998, Rev. Sci. Instrum., 69, 3809, 10.1063/1.1149183

2013, Nat. Phys., 9, 293, 10.1038/nphys2572

1996, Phys. Rev. Lett., 77, 3419, 10.1103/PhysRevLett.77.3419

2000, Surf. Sci., 459, 49, 10.1016/S0039-6028(00)00441-6

2001, Phys. Rev. B, 65, 033407, 10.1103/PhysRevB.65.033407

2012, Nat. Phys., 8, 616, 10.1038/nphys2351

2011, Phys. Rev. Lett., 106, 166401, 10.1103/PhysRevLett.106.166401

2012, Nano Lett., 12, 1776, 10.1021/nl2035018

2010, Phys. Rev. Lett., 104, 156805, 10.1103/PhysRevLett.104.156805

1998, Phys. Rev. Lett., 81, 1953, 10.1103/PhysRevLett.81.1953

1997, Phys. Rev. Lett., 79, 5158, 10.1103/PhysRevLett.79.5158

1998, J. Electron Spectrosc. Relat. Phenom., 88–91, 179, 10.1016/S0368-2048(97)00110-2

2006, Phys. Rev. Lett., 97, 177201, 10.1103/PhysRevLett.97.177201

2009, Nature Mater., 8, 115, 10.1038/nmat2334

2010, Phys. Rev. Lett., 105, 197401, 10.1103/PhysRevLett.105.197401

2011, Phys. Rev. Lett., 107, 026601, 10.1103/PhysRevLett.107.026601

1997, Phys. Rev. Lett., 79, 5146, 10.1103/PhysRevLett.79.5146

2011, Phys. Rev. B, 84, 132412, 10.1103/PhysRevB.84.132412

1996, Phys. Rev. Lett., 76, 4250, 10.1103/PhysRevLett.76.4250

2009, Phys. Rev. Lett., 103, 117201, 10.1103/PhysRevLett.103.117201

2007, J. Phys.: Condens. Matter, 19, 043201, 10.1088/0953-8984/19/4/043201

2011, Phys. Rev. Lett., 107, 077401, 10.1103/PhysRevLett.107.077401

2012, Phys. Rev. B, 86, 205133, 10.1103/PhysRevB.86.205133