Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tiêu diệt nhanh chóng vi khuẩn kháng kháng sinh và biofilm bằng MXene và ánh sáng hồng ngoại gần thông qua sự hủy diệt photothermal
Tóm tắt
Với sự phát triển và gia tăng kháng thuốc kháng sinh, việc tiêu diệt vi khuẩn nhanh chóng và hiệu quả trở nên cấp bách, đặc biệt là đối với vi khuẩn kháng kháng sinh và biofilm vi khuẩn thường khó điều trị bằng kháng sinh thông thường. Ở đây, một chiến lược kháng khuẩn nhanh chóng và rộng rãi được chứng minh thông qua sự hủy diệt photothermal với MXene và ánh sáng. MXene Ti3C2, khi kết hợp với ánh sáng 808 nm, cho thấy hiệu quả kháng khuẩn đáng kể chỉ trong 20 phút. Chiến lược kháng khuẩn này có hiệu quả với 15 loài vi khuẩn thử nghiệm, bao gồm Staphylococcus aureus kháng methicillin (MRSA) và Enterococcus kháng vancomycin (VRE). Ngoài ra, chiến lược kháng khuẩn nhanh chóng này còn hoạt động hiệu quả với biofilm MRSA, bằng cách làm hỏng cấu trúc cũng như tiêu diệt vi khuẩn trong biofilm. Hơn nữa, việc điều tra cơ chế kháng khuẩn cho thấy rằng Ti3C2 với ánh sáng tiêu diệt vi khuẩn chủ yếu theo cách vật lý thông qua việc cắm vào/liên hệ và tác động photothermal. Nghiên cứu này mở rộng các ứng dụng tiềm năng của MXene và cung cấp một cách để tiêu diệt vi khuẩn và biofilm một cách vật lý, mà không có khả năng phát triển kháng thuốc.
Từ khóa
#kháng sinh; vi khuẩn; biofilm; MXene; hủy diệt photothermalTài liệu tham khảo
Köser CU, Holden MTG, Ellington MJ, et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med, 2012, 366: 2267–2275
Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis, 2013, 13: 1057–1098
Lindsay JA. Hospital-associated MRSA and antibiotic resistance—What have we learned from genomics? Int J Med MicroBiol, 2013, 303: 318–323
Dong P, Mohammad H, Hui J, et al. Photolysis of staphyloxanthin in methicillin-resistant Staphylococcus aureus potentiates killing by reactive oxygen species. Adv Sci, 2019, 6: 1900030
Howard SJ, Hopwood S, Davies SC. Antimicrobial resistance: A global challenge. Sci Translational Med, 2014, 6: 236ed10
Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases. Nature, 2008, 451: 990–993
Emanuele P. Antibiotic resistance. AAOHN J, 2010, 58: 363–365
Sugden R, Kelly R, Davies S. Combatting antimicrobial resistance globally. Nat Microbiol, 2016, 1: 1–2
O’Neill J. Tackling drug-resistant infections globally: Final report and recommendations. The review on antimicrobial resistance. London: Wellcome Trust and HM Government, 2016
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: A common cause of persistent infections. Science, 1999, 284: 1318–1322
Wang Z, Zhu W, Qiu Y, et al. Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem Soc Rev, 2016, 45: 1750–1780
Rasool K, Mahmoud KA, Johnson DJ, et al. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci Rep, 2017, 7: 1598
Naguib M, Mochalin VN, Barsoum MW, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv Mater, 2014, 26: 992–1005
Lei JC, Zhang X, Zhou Z. Recent advances in MXene: Preparation, properties, and applications. Front Phys, 2015, 10: 276–286
Jastrzebska AM, Karwowska E, Wojciechowski T, et al. The atomic structure of Ti2C and Ti3C2 MXenes is responsible for their antibacterial activity toward E. coli bacteria. J Materi Eng Perform, 2018, 28: 1272–1277
Ji H, Sun H, Qu X. Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges. Adv Drug Deliver Rev, 2016, 105: 176–189
Sun W, Wu FG. Two-dimensional materials for antimicrobial applications: Graphene materials and beyond. Chem Asian J, 2018, 13: 3378–3410
Rasool K, Helal M, Ali A, et al. Antibacterial activity of Ti3C2Tx MXene. ACS Nano, 2016, 10: 3674–3684
Arabi Shamsabadi A, Sharifian Gh. M, Anasori B, et al. Antimicrobial mode-of-action of colloidal Ti3C2Tx MXene nanosheets. ACS Sustain Chem Eng, 2018, 6: 16586–16596
Zhu W, von dem Bussche A, Yi X, et al. Nanomechanical mechanism for lipid bilayer damage induced by carbon nanotubes confined in intracellular vesicles. Proc Natl Acad Sci USA, 2016, 113: 12374–12379
Tu Y, Lv M, Xiu P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotech, 2013, 8: 594–601
Lu X, Feng X, Werber JR, et al. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc Natl Acad Sci USA, 2017, 114: E9793–E9801
Li Y, Yuan H, von dem Bussche A, et al. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci USA, 2013, 110: 12295–12300
Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano, 2019, 13: 8491–8494
Henriques PC, Borges I, Pinto AM, et al. Fabrication and antimicrobial performance of surfaces integrating graphene-based materials. Carbon, 2018, 132: 709–732
Karahan HE, Wiraja C, Xu C, et al. Graphene materials in antimicrobial nanomedicine: Current status and future perspectives. Adv Healthcare Mater, 2018, 7: 1701406
Zou X, Zhang L, Wang Z, et al. Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc, 2016, 138: 2064–2077
Liu GY, Essex A, Buchanan JT, et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med, 2005, 202: 209–215
Wu MC, Deokar AR, Liao JH, et al. Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano, 2013, 7: 1281–1290
Han X, Jing X, Yang D, et al. Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics, 2018, 8: 4491–4508
Lin H, Gao S, Dai C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc, 2017, 139: 16235–16247
Li R, Zhang L, Shi L, et al. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano, 2017, 11: 3752–3759
Lin H, Wang X, Yu L, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett, 2017, 17: 384–391
Xiang H, Lin H, Yu L, et al. Hypoxia-irrelevant photonic thermodynamic cancer nanomedicine. ACS Nano, 2019, 13: 2223–2235
Gazzi A, Fusco L, Khan A, et al. Photodynamic therapy based on graphene and MXene in cancer theranostics. Front Bioeng Biotechnol, 2019, 7: 295
Zhang Q, Yan L, Yang M, et al. Ultrafast transient spectra and dynamics of MXene (Ti3C2Tx) in response to light excitations of various wavelengths. J Phys Chem C, 2020, 124: 6441–6447
Song W, Zhang Q, Xu H, et al. Ultrafast dynamics and energy relaxation for nanoporous gold materials: Lower porosity and faster energy exchange. J Phys Chem C, 2020, 124: 6356–6363
El-Demellawi JK, Lopatin S, Yin J, et al. Tunable multipolar surface plasmons in 2D Ti3C2Tx MXene flakes. ACS Nano, 2018, 12: 8485–8493
Dai C, Lin H, Xu G, et al. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem Mater, 2017, 29: 8637–8652
Liu G, Zou J, Tang Q, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl Mater Interfaces, 2017, 9: 40077–40086
Qiao Y, Ma F, Liu C, et al. Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing. ACS Appl Mater Interfaces, 2017, 10: 193–206
Wei X, Zhang T, Luo T. Thermal energy transport across hard-soft interfaces. ACS Energy Lett, 2017, 2: 2283–2292
Li J, Zhang Q, Yan L, et al. Ultrafast flash energy conductance at MXene-surfactant interface and its molecular origins. Adv Mater Interfaces, 2019, 6: 1901461
Li J, Chi Z, Qin R, et al. Hydrogen bond interaction promotes flash energy transport at MXene-solvent interface. J Phys Chem C, 2020, 124: 10306–10314
Li J, Qin R, Yan L, et al. Plasmonic light illumination creates a channel to achieve fast degradation of Ti3C2Tx nanosheets. Inorg Chem, 2019, 58: 7285–7294
