Rapid discrimination of fungal strains isolated from human skin based on microbial volatile organic profiles

Joao Raul Belinato1, Evandro Silva1, Daiane Silva de Souza1, Paulo Henrique Março2, Patrícia Valderrama2, Rodolpho Martin do Prado3, Rafaella C. Bonugli-Santos4, Eduardo Jorge Pilau1, Carla Porto1,5
1Department of Chemistry, State University of Maringá (UEM), Ave. Colombo 5790, Maringá, PR 87020-900, Brazil
2Postgraduate Program in Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), P.O. Box, 271, Campo Mourão, PR 87301-899, Brazil
3Animal Science Department, State University of Maringá (UEM), Ave. Colombo 5790, Maringá, PR 87020-900, Brazil
4Federal University for Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Av Taquinio Joslin dos Santos, 1000, Foz do Iguaçu 85870-650, PR, Brazil
5Program of Master in Science, Technology and Food Safety, Cesumar Institute of Science, Technology and Innovation (ICETI), University Center of Maringá - (UNICESUMAR), Av. Guedner, 1610, Maringá, PR 87050-900, Brazil

Tài liệu tham khảo

Sanmiguel, 2015, Interactions between host factors and the skin microbiome, Cell. Mol. Life Sci., 72, 1499, 10.1007/s00018-014-1812-z Schommer, 2013, Structure and function of the human skin microbiome, Trends Microbiol., 21, 660, 10.1016/j.tim.2013.10.001 Dunn, 2005, Measuring the metabolome: current analytical technologies, Analyst, 130, 606, 10.1039/b418288j Dunn, 2005, Metabolomics: current analytical platforms and methodologies, TrAC Trends Anal. Chem., 24, 285, 10.1016/j.trac.2004.11.021 Morath, 2012, Fungal volatile organic compounds: a review with emphasis on their biotechnological potential, Fungal Biol. Rev., 26, 73, 10.1016/j.fbr.2012.07.001 Sawoszczuk, 2015, Optimization of headspace solid phase microextraction for the analysis of microbial volatile organic compounds emitted by fungi: application to historical objects, J. Chromatogr. A, 1409, 30, 10.1016/j.chroma.2015.07.059 Augusto, 2002, Applications of solid-phase microextraction to chemical analysis of live biological samples, TrAC Trends Anal. Chem., 21, 428, 10.1016/S0165-9936(02)00602-7 Pawliszyn, 2012, Theory of solid-phase microextraction, Handb. Solid Phase Microextraction., 38, 13, 10.1016/B978-0-12-416017-0.00002-4 Polizzi, 2012, Influence of various growth parameters on fungal growth and volatile metabolite production by indoor molds, Sci. Total Environ., 414, 277, 10.1016/j.scitotenv.2011.10.035 Fiedler, 2001, Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials, Int. J. Hyg. Environ. Health, 204, 111, 10.1078/1438-4639-00094 Lima, 2015, In vivo determination of the volatile metabolites of saprotroph fungi by comprehensive two-dimensional gas chromatography, J. Sep. Sci., 1 Smart, 2010, Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography–mass spectrometry, Nat. Protoc., 5, 1709, 10.1038/nprot.2010.108 Abdulra'uf, 2015, Chemometric approach to the optimization of HS-SPME/GC-MS for the determination of multiclass pesticide residues in fruits and vegetables, Food Chem., 177, 267, 10.1016/j.foodchem.2015.01.031 Wold, 1987, Principal component analysis, Chemom. Intell. Lab. Syst., 2, 37, 10.1016/0169-7439(87)80084-9 Yi, 2016, Chemometric methods in data processing of mass spectrometry-based metabolomics: a review, Anal. Chim. Acta, 914, 17, 10.1016/j.aca.2016.02.001 Sahgal, 2008, Fungal volatile fingerprints: discrimination between dermatophyte species and strains by means of an electronic nose, Sensors Actuators B Chem., 131, 117, 10.1016/j.snb.2007.12.019 Souza, 2017 Tomasi, 2011, Icoshift: an effective tool for the alignment of chromatographic data, J. Chromatogr. A, 1218, 7832, 10.1016/j.chroma.2011.08.086 Silva, 2008, Environ. Technol., 29, 1331, 10.1080/09593330802379466 Reynolds, 1993, Fusarium and its near relatives, 225 Sette, 2005, 87, 81 Thompson, 1997, Nucleic Acids Res., 24, 4876, 10.1093/nar/25.24.4876 Tamara, 2004, Mol. Biol. Evol., 24, 1596, 10.1093/molbev/msm092 Kimura, 1980, J. Mol. Evol., 16, 111, 10.1007/BF01731581 Fiers, 2013, Volatile compound-mediated interactions between barley and pathogenic fungi in the soil, PLoS One, 8, 10.1371/journal.pone.0066805 Moreira, 2013, Chemometric discrimination of genetically modified Coffea arabica cultivars using spectroscopic and chromatographic fingerprints, Talanta, 107, 416, 10.1016/j.talanta.2013.01.053 de Almeida, 2018, Correction to: textural, color, hygroscopic, lipid oxidation, and sensory properties of cookies containing free and microencapsulated chia oil, Food Bioprocess Technol., 11, 940, 10.1007/s11947-018-2080-y de Almeida, 2018, Textural, color, hygroscopic, lipid oxidation, and sensory properties of cookies containing free and microencapsulated chia oil, Food Bioprocess Technol., 11, 926, 10.1007/s11947-018-2057-x Sahgal, 2006, Trichophyton species: use of volatile fingerprints for rapid identification and discrimination, Br. J. Dermatol., 155, 1209, 10.1111/j.1365-2133.2006.07549.x Schymanski, 2014, Identifying small molecules via high resolution mass spectrometry: communicating confidence, Environ. Sci. Technol., 48, 2097, 10.1021/es5002105 Oliveira, 2015, Volatile organic compounds from filamentous fungi: a chemotaxonomic tool of the Botryosphaeriaceae family, J. Braz. Chem. Soc., 26, 2189