Rapid damping of the oscillations of coronal loops with an azimuthal magnetic field

Astronomy Letters - Tập 31 - Trang 406-413 - 2005
B. B. Mikhalyaev1
1Kalmyk State University, Elista, Kalmykia, Russia

Tóm tắt

We consider the MHD oscillations of an inhomogeneous coronal loop that consists of a dense cord surrounded by a shell. The magnetic field is longitudinal in the cord and has only an azimuthal component in the shell. The parameters of the loop are chosen to be such that there are no resonances; i.e., the resonance points are cut off. This choice is dictated by the formulated problem of considering the influence of the radiation of MHD waves into the surrounding space on the loop oscillations, thereby ruling out the possibility of resonant energy absorption. The wave radiation efficiency is high and allows low oscillation Q-factors, which are equal in order of magnitude to their observed values, to be obtained.

Tài liệu tham khảo

H. Alfvèn and J. Carlqwist, Sol. Phys. (1967). K. Appert, R. Gruber, and J. Vaclavik, Phys. Fluids 17, 1471 (1974). M. J. Aschwanden, Astrophys. J. 560, 1035 (2001). M. J. Aschwanden, L. Fletcher, C. J. Schrijver, et al., Astrophys. J. 520, 880 (1999). P. M. Edwin and B. Roberts, Sol. Phys. 88, 179 (1983). W. Grossmann and J. Tataronis, Z. Phys. 261, 203 (1973). B. B. Mikhalyaev and A. A. Solov’ev, Pis’ma Astron. Zh. 30, 307 (2004) [Astron. Lett. 30, 268 (2004)]. V. M. Nakariakov, L. Ofman, and E. E. Deluca, Science 285, 862 (1999). L. Ofman and M. J. Aschwanden, Astrophys. J. 576, L153 (2002). E. N. Parker, Cosmical Magnetic Fields: Their Origin and Their Activity (Clarendon Press, Oxford, 1979; Mir, Moscow, 1982). B. Roberts, in Proceedings of SOHO13 “Waves, Oscillations and Small-Scale Transient Events in the Solar Atmosphere: A Joint View from SOHO and TRACE,” Palma de Mallorka, Balearic Islands, Spain, 2003, ESA SP 547, 3 (2004). M. S. Ruderman, Astron. Astrophys. 409, 287 (2003). M. S. Ruderman and B. Roberts, Astrophys. J. 577, 475 (2002). V. I. Smirnov, A Course of Higher Mathematics (Addison-Wesley, Reading, Mass., 1964; Nauka, Moscow, 1974), Vol. 3, Part 2. A. A. Solov’ev, B. B. Mikhalyaev, and E. A. Kirichek, Fiz. Plazmy 28, 758 (2002) [Plasma Phys. Rep. 28, 699 (2002)]. A. A. Solov’ev, B. B. Mikhalyaev, and E. A. Kirichek, Fiz. Plazmy 29, 1130 (2003) [Plasma Phys. Rep. 29, 1049 (2003)]. H. S. Spruit, Sol. Phys. 75, 3 (1982). J. Tataronis and W. Grossmann, Z. Phys. 261, 217 (1973). T. Van Doorsselaere, J. Andries, S. Poedts, et al., Astrophys. J. 606, 1223 (2004).