Rapid chemical vapor deposition of graphene using methanol as a precursor

Imbok Lee1, Jungtae Nam1,2, Sang Jun Park1, Deg‐Hyo Bae1, Suklyun Hong1, Keun Soo Kim1
1Department of Physics and GRI-TPC International Research Center, Sejong University, Seoul, Republic of Korea
2Carbon Convergence Materials Research Center, Institute of Advanced Composites Materials, Korea Institute of Science and Technology, Wanju-gun, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Novoselov KS (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

Tombros N, Jozsa C, Popinciuc M et al (2007) Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448:571–574. https://doi.org/10.1038/nature06037

Chen J-H, Jang C, Xiao S et al (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206–209. https://doi.org/10.1038/nnano.2008.58

Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204. https://doi.org/10.1038/nature04235

Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. https://doi.org/10.1021/nl0731872

Mak KF, Sfeir MY, Wu Y et al (2008) Measurement of the optical conductivity of graphene. Phys Rev Lett 101:196405. https://doi.org/10.1103/PhysRevLett.101.196405

Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308–1308. https://doi.org/10.1126/science.1156965

Booth TJ, Blake P, Nair RR et al (2008) Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett 8:2442–2446. https://doi.org/10.1021/nl801412y

Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. https://doi.org/10.1126/science.1157996

Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622. https://doi.org/10.1038/nphoton.2010.186

Wang Y, Tong SW, Xu XF et al (2011) Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv Mater 23:1514–1518. https://doi.org/10.1002/adma.201003673

Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608. https://doi.org/10.1021/nl3012853

Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706

Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314. https://doi.org/10.1126/science.1171245

Ito K, Katagiri M, Sakai T, Awano Y (2013) Electrical resistivity measurements of layer number determined multilayer graphene wiring for future large scale integrated circuit interconnects. Jpn J Appl Phys. https://doi.org/10.7567/JJAP.52.06GD08

Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35. https://doi.org/10.1021/nl801827v

Cao H, Yu Q, Colby R et al (2010) Large-scale graphitic thin films synthesized on Ni and transferred to insulators: structural and electronic properties. J Appl Phys 107:044310. https://doi.org/10.1063/1.3309018

Gomez De Arco L, Zhang Y, Schlenker CW et al (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873. https://doi.org/10.1021/nn901587x

Kobayashi T, Bando M, Kimura N et al (2013) Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett 102:023112. https://doi.org/10.1063/1.4776707

Choe M, Lee BH, Jo G et al (2010) Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Org Electron 11:1864–1869. https://doi.org/10.1016/j.orgel.2010.08.018

Jo G, Na S-I, Oh S-H et al (2010) Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure. Appl Phys Lett 97:213301. https://doi.org/10.1063/1.3514551

Wang M, Jang SK, Jang W-J et al (2013) A platform for large-scale graphene electronics—CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv Mater 25:2746–2752. https://doi.org/10.1002/adma.201204904

Goyenola C, Stafström S, Schmidt S et al (2014) Carbon fluoride, CFx: structural diversity as predicted by first principles. J Phys Chem C 118:6514–6521. https://doi.org/10.1021/jp500653c

Refaely-Abramson S, Baer R, Kronik L (2011) Fundamental and excitation gaps in molecules of relevance for organic photovoltaics from an optimally tuned range-separated hybrid functional. Phys Rev B 84:075144. https://doi.org/10.1103/PhysRevB.84.075144

Lin L, Peng H, Liu Z (2019) Synthesis challenges for graphene industry. Nat Mater 18:520–524. https://doi.org/10.1038/s41563-019-0341-4

Cherian CT, Giustiniano F, Martin-Fernandez I et al (2015) ‘Bubble-Free’ electrochemical delamination of CVD graphene films. Small 11:189–194. https://doi.org/10.1002/smll.201402024

Nam J, Lee I, Lee DY et al (2020) Abnormal grain growth for single-crystal Cu substrate and chemical vapor deposition of graphene on it. J Korean Phys Soc 76:923–927. https://doi.org/10.3938/jkps.76.923

Nam J, Kim D-C, Yun H et al (2017) Chemical vapor deposition of graphene on platinum: growth and substrate interaction. Carbon 111:733–740. https://doi.org/10.1016/j.carbon.2016.10.048

Lee I, Bae DJ, Lee WK et al (2019) Rapid synthesis of graphene by chemical vapor deposition using liquefied petroleum gas as precursor. Carbon 145:462–469. https://doi.org/10.1016/j.carbon.2019.01.004

Yamada T, Kim J, Ishihara M, Hasegawa M (2013) Low-temperature graphene synthesis using microwave plasma CVD. J Phys Appl Phys 46:063001. https://doi.org/10.1088/0022-3727/46/6/063001

Choi DS, Kim KS, Kim H et al (2014) Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst. ACS Appl Mater Interfaces 6:19574–19578. https://doi.org/10.1021/am503698h

Park SJ, Lee I, Bae DJ et al (2015) Controlling the properties of graphene using CVD method: pristine and N-doped graphene. KEPCO J Electr Power Energy 1:169–174. https://doi.org/10.18770/KEPCO.2015.01.01.169

Blake P, Hill EW, Castro Neto AH et al (2007) Making graphene visible. Appl Phys Lett 91:063124. https://doi.org/10.1063/1.2768624

Ferrari AC (2007) Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57. https://doi.org/10.1016/j.ssc.2007.03.052

Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87. https://doi.org/10.1016/j.physrep.2009.02.003

Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246. https://doi.org/10.1038/nnano.2013.46

Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401. https://doi.org/10.1103/PhysRevLett.97.187401

Park JS, Reina A, Saito R et al (2009) G′ band Raman spectra of single, double and triple layer graphene. Carbon 47:1303–1310. https://doi.org/10.1016/j.carbon.2009.01.009

Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496. https://doi.org/10.1038/nnano.2010.89

Kim S, Nah J, Jo I et al (2009) Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl Phys Lett 94:062107. https://doi.org/10.1063/1.3077021

Venugopal A, Chan J, Li X et al (2011) Effective mobility of single-layer graphene transistors as a function of channel dimensions. J Appl Phys 109:104511. https://doi.org/10.1063/1.3592338