Xác định nhanh và không phá hủy uranium và thorium bằng quang phổ gamma và so sánh với ICP-AES

Journal of Radioanalytical and Nuclear Chemistry - Tập 306 - Trang 401-406 - 2015
Arijit Sengupta1, Renuka H. Sankhe2, V. Natarajan1
1Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
2Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India

Tóm tắt

Một phương pháp nhanh, đơn giản và không phá hủy đã được phát triển để xác định thorium và uranium bằng quang phổ gamma (máy dò Ge tinh khiết cao) trong hỗn hợp thorium-uranium. Sử dụng các đường chuẩn, thorium và uranium đã được phân tích trong các mẫu tổng hợp với RSD ~2%. Ảnh hưởng giữa các yếu tố cho thấy rằng các đường gamma 583 và 185.7 keV là phù hợp hơn cho việc xác định Th và U, tương ứng trong hỗn hợp Th-U. Phương pháp mới phát triển đã được xác nhận bằng phương pháp thường quy sử dụng các mẫu tổng hợp. Một phương pháp dựa trên ICP-AES đã được phát triển để xác định uranium và thorium nhằm mục đích so sánh.

Từ khóa

#quang phổ gamma #thorium #uranium #ICP-AES #phương pháp không phá hủy

Tài liệu tham khảo

Kademani BS, Kumar V, Sagar A, Kumar A, Mohan L, Sutwase G, Scientometric (2006) Dimensions of thorium research in lndia. DESlDOC Bull Inf Technol 26:9–25 Kang J, Von Hippel FN (2001) 232U and the proliferation-resistance of 233U in spent fuel. Sci Glob Secur 7(3):237–269 Hargraves R, Moir R (2011) Liquid fuel nuclear reactors. Am Phys Soc Forum Phys Soc 40(2):10–13 Johnston A, Martin P (1997) Rapid analysis of 226Ra in waters by gamma-ray spectrometry. Appl Radiat Isot 48(5):631–638 Holtzmann RB, Jiang H (1989) Simultaneous determination of 224Ra, 226Ra and 228Ra in large volumes of well waters. J Health Phys 57(1):167–168 Kahn B, Rosson R (1990) Analysis of 228Ra and 226Ra in public water supplies by a gamma-ray spectrometer. J Health Phys 59(1):125–131 Bojanowski R, Holm E, Whitehead NE (1987) Determination of 227Ac by α-particle spectrometry. J Radioanal Nucl Chem 115(1):23–37 Hancock GJ, Martin P (1991) Determination of Ra in environmental samples by α-particle spectrometry. Appl Radiat Isot 42(1):63–69 Martin P, Hancock GJ, Paulka S, Akber RA (1995) Determination of 227Ac by α-particle spectrometry. Appl Radiat Isot 46(10):1065–1070 Chalupnik J, Lebecka M (1993) Determination of 226Ra, 228Ra and 224Ra in water and aqueous solutions by liquid scintillation counting. In: Noakes JE, SchoÈnhofer F, Polach HA (Eds.) Liquid scintillation spectrometry. Radiocarbon, p 397 Salonen L, Hukkanen H (1997) Advantages of low-background liquid scintillation alpha spectrometry and pulse shape analysis in measuring 222Rn, uranium and 226Ra in groundwater samples. J Radioanal Nucl Chem 226(1–2):67–74 Sengupta A, Adya VC, Godbole SV (2013) Spectral interference study of uranium on other analytes by using CCD based ICP-AES. J Radioanal Nucl Chem 298:1117–1125 Sengupta A, Adya VC, Godbole SV (2012) Development of a methodology for the determination of americium and thorium by ICP-AES and their inter-element effect. J Radioanal Nucl Chem 292(3):1259–1264 Dowdall M, Selnaes ØG, Gwynn JP, Davids C (2004) A comparison of alpha and gamma spectrometry for environmental natural radioactivity surveys. J Radioanal Nucl Chem 261(3):513–515 Kaste JM, Bostick BC, Heimsath AM (2006) Determining 234Th and 238U in rocks, soils, and sediments via the doublet gamma at 92.5 keV. Analyst 131(6):757–763 Saidou Bochud F, Laedermann JP, Kwato Njock MG, Froidevaux P (2008) A comparison of alpha and gamma spectrometry for environmental natural radioactivity surveys. Appl Radiat Isot 66(2):215–222 Yucel H, Cetiner MA, Demirel H (1998) Use of the 1001 keV peak of 234mPa daughter of 238U in measurement of uranium concentration by HP-Ge gamma-ray spectrometry. Nucl Instrum Methods A 413(1):74–82 Papachristodoulou CA, Assimakopoulos PA, Patronis NE, Ionnadis KG (2003) Use of HP-Ge gamma-ray spectrometry to assess the isotopic composition of uranium in soils. J Environ Radioact 64(2–3):195–203 Sengupta A, Thulasidas SK, Natarajan V (2015) Trace level determination of precious metals in aqueous medium, U, Th and Zr based nuclear materials by ICP-AES and EDXRF—a comparative study. J Radioanal Nucl Chem 303:2421–2429 Sengupta A, Kulkarni MJ, Godbole SV (2011) Analytical application of DHOA for the determination of trace metallic constituents in U based fuel materials by ICP-AES. J Radioanal Nucl Chem 289(3):961–965 Sengupta A, Rajeswari B, Kadam RM, Acharya R (2011) Determination of trace elements in carbon steel by inductively coupled plasma atomic emission spectrometry. At Spectrosc 32(5):200–205 Sengupta A, Rajeswari B, Kadam RM, Kshirsagar RJ (2011) Characterization of serpentine: a potential nuclear shielding material. J Radioanal Nucl Chem 292(2):903–908 Sengupta A, Thulasidas SK, Natarajan V (2014) Study on the spectral interference of thorium on critical elements and rare earths by CCD-based ICP-AES. At Spectrosc 35(5):213–222 Rao RM, Mirashi NN, Agarwal SK (2003) Proceeding of the annual 40th convention of chemists, Jhansi, p 61–62 Shriwastawa BB, Kumar A, Raghunath B, Nair MR, Abani MC, Ramchandra R, Majumdar S, Ghosh JK (2001) Rapid non-destructive quantitative estimation of urania/thoria in mixed thorium uranium di-oxide pellets by high-resolution gamma-ray spectrometry. Appl Radiat Isot 54(6):941–945 Garcia-Talavera M (2003) Evaluation of the suitability of various γ lines for the γ spectrometric determination of 238U in environmental samples. Appl Radiat Isot 59(2–3):165–173 Davis W, Gray W (1964) A rapid and specific titrimetric method for the precise determination of uranium using iron(II) sulphate as reductant. Talanta 11:1203–1211 Fritz JJ, Ford JJ (1953) Titrimetric determination of thorium. Anal Chem 25:1640–1642