Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Xác định nhanh và không phá hủy uranium và thorium bằng quang phổ gamma và so sánh với ICP-AES
Tóm tắt
Một phương pháp nhanh, đơn giản và không phá hủy đã được phát triển để xác định thorium và uranium bằng quang phổ gamma (máy dò Ge tinh khiết cao) trong hỗn hợp thorium-uranium. Sử dụng các đường chuẩn, thorium và uranium đã được phân tích trong các mẫu tổng hợp với RSD ~2%. Ảnh hưởng giữa các yếu tố cho thấy rằng các đường gamma 583 và 185.7 keV là phù hợp hơn cho việc xác định Th và U, tương ứng trong hỗn hợp Th-U. Phương pháp mới phát triển đã được xác nhận bằng phương pháp thường quy sử dụng các mẫu tổng hợp. Một phương pháp dựa trên ICP-AES đã được phát triển để xác định uranium và thorium nhằm mục đích so sánh.
Từ khóa
#quang phổ gamma #thorium #uranium #ICP-AES #phương pháp không phá hủyTài liệu tham khảo
Kademani BS, Kumar V, Sagar A, Kumar A, Mohan L, Sutwase G, Scientometric (2006) Dimensions of thorium research in lndia. DESlDOC Bull Inf Technol 26:9–25
Kang J, Von Hippel FN (2001) 232U and the proliferation-resistance of 233U in spent fuel. Sci Glob Secur 7(3):237–269
Hargraves R, Moir R (2011) Liquid fuel nuclear reactors. Am Phys Soc Forum Phys Soc 40(2):10–13
Johnston A, Martin P (1997) Rapid analysis of 226Ra in waters by gamma-ray spectrometry. Appl Radiat Isot 48(5):631–638
Holtzmann RB, Jiang H (1989) Simultaneous determination of 224Ra, 226Ra and 228Ra in large volumes of well waters. J Health Phys 57(1):167–168
Kahn B, Rosson R (1990) Analysis of 228Ra and 226Ra in public water supplies by a gamma-ray spectrometer. J Health Phys 59(1):125–131
Bojanowski R, Holm E, Whitehead NE (1987) Determination of 227Ac by α-particle spectrometry. J Radioanal Nucl Chem 115(1):23–37
Hancock GJ, Martin P (1991) Determination of Ra in environmental samples by α-particle spectrometry. Appl Radiat Isot 42(1):63–69
Martin P, Hancock GJ, Paulka S, Akber RA (1995) Determination of 227Ac by α-particle spectrometry. Appl Radiat Isot 46(10):1065–1070
Chalupnik J, Lebecka M (1993) Determination of 226Ra, 228Ra and 224Ra in water and aqueous solutions by liquid scintillation counting. In: Noakes JE, SchoÈnhofer F, Polach HA (Eds.) Liquid scintillation spectrometry. Radiocarbon, p 397
Salonen L, Hukkanen H (1997) Advantages of low-background liquid scintillation alpha spectrometry and pulse shape analysis in measuring 222Rn, uranium and 226Ra in groundwater samples. J Radioanal Nucl Chem 226(1–2):67–74
Sengupta A, Adya VC, Godbole SV (2013) Spectral interference study of uranium on other analytes by using CCD based ICP-AES. J Radioanal Nucl Chem 298:1117–1125
Sengupta A, Adya VC, Godbole SV (2012) Development of a methodology for the determination of americium and thorium by ICP-AES and their inter-element effect. J Radioanal Nucl Chem 292(3):1259–1264
Dowdall M, Selnaes ØG, Gwynn JP, Davids C (2004) A comparison of alpha and gamma spectrometry for environmental natural radioactivity surveys. J Radioanal Nucl Chem 261(3):513–515
Kaste JM, Bostick BC, Heimsath AM (2006) Determining 234Th and 238U in rocks, soils, and sediments via the doublet gamma at 92.5 keV. Analyst 131(6):757–763
Saidou Bochud F, Laedermann JP, Kwato Njock MG, Froidevaux P (2008) A comparison of alpha and gamma spectrometry for environmental natural radioactivity surveys. Appl Radiat Isot 66(2):215–222
Yucel H, Cetiner MA, Demirel H (1998) Use of the 1001 keV peak of 234mPa daughter of 238U in measurement of uranium concentration by HP-Ge gamma-ray spectrometry. Nucl Instrum Methods A 413(1):74–82
Papachristodoulou CA, Assimakopoulos PA, Patronis NE, Ionnadis KG (2003) Use of HP-Ge gamma-ray spectrometry to assess the isotopic composition of uranium in soils. J Environ Radioact 64(2–3):195–203
Sengupta A, Thulasidas SK, Natarajan V (2015) Trace level determination of precious metals in aqueous medium, U, Th and Zr based nuclear materials by ICP-AES and EDXRF—a comparative study. J Radioanal Nucl Chem 303:2421–2429
Sengupta A, Kulkarni MJ, Godbole SV (2011) Analytical application of DHOA for the determination of trace metallic constituents in U based fuel materials by ICP-AES. J Radioanal Nucl Chem 289(3):961–965
Sengupta A, Rajeswari B, Kadam RM, Acharya R (2011) Determination of trace elements in carbon steel by inductively coupled plasma atomic emission spectrometry. At Spectrosc 32(5):200–205
Sengupta A, Rajeswari B, Kadam RM, Kshirsagar RJ (2011) Characterization of serpentine: a potential nuclear shielding material. J Radioanal Nucl Chem 292(2):903–908
Sengupta A, Thulasidas SK, Natarajan V (2014) Study on the spectral interference of thorium on critical elements and rare earths by CCD-based ICP-AES. At Spectrosc 35(5):213–222
Rao RM, Mirashi NN, Agarwal SK (2003) Proceeding of the annual 40th convention of chemists, Jhansi, p 61–62
Shriwastawa BB, Kumar A, Raghunath B, Nair MR, Abani MC, Ramchandra R, Majumdar S, Ghosh JK (2001) Rapid non-destructive quantitative estimation of urania/thoria in mixed thorium uranium di-oxide pellets by high-resolution gamma-ray spectrometry. Appl Radiat Isot 54(6):941–945
Garcia-Talavera M (2003) Evaluation of the suitability of various γ lines for the γ spectrometric determination of 238U in environmental samples. Appl Radiat Isot 59(2–3):165–173
Davis W, Gray W (1964) A rapid and specific titrimetric method for the precise determination of uranium using iron(II) sulphate as reductant. Talanta 11:1203–1211
Fritz JJ, Ford JJ (1953) Titrimetric determination of thorium. Anal Chem 25:1640–1642