Chức năng hóa ống nano carbon nhiều lớp bằng glucose: nghiên cứu cấu trúc và chế tạo các composite poly(amide-imide) dựa trên dopamine

Polymer Bulletin - Tập 71 - Trang 2523-2542 - 2014
Shadpour Mallakpour1,2,3, Amin Zadehnazari1
1Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, Islamic Republic of Iran
2Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, Islamic Republic of Iran
3Center of Excellence in Sensors and Green Chemistry, Department of Chemistry, Isfahan University of Technology, Isfahan, Islamic Republic of Iran

Tóm tắt

Quá trình chức năng hóa ống nano carbon nhiều lớp (MWCNTs) bằng glucose được thực hiện thông qua phản ứng este hóa. Phản ứng được tiến hành trong môi trường nước, có sự hiện diện của N,N′-carbonyldiimidazole như một chất xúc tác. MWCNTs chức năng hóa bằng glucose (MWCNTs-Gl) đã được đặc trưng thông qua một loạt các phương pháp bao gồm phổ hồng ngoại biến đổi Fourier, nhiễu xạ tia X, quét phát xạ trường và kính hiển vi điện tử truyền qua. Kết quả phân tích nhiệt trọng lượng (TGA) cũng đã chứng minh sự hiện diện của phần hữu cơ trong các MWCNTs chức năng hóa. Các màng composite MWCNT-Gl/poly(amide-imide) (PAI) với các hàm lượng MWCNTs-Gl khác nhau (5, 10 và 15 wt%) đã được chuẩn bị bằng phương pháp trộn dung dịch hỗ trợ siêu âm. Các quan sát kính hiển vi cho thấy sự phân tán của MWCNTs-Gl được cải thiện nhờ các nhóm hữu cơ trên bề mặt MWCNT và các nhóm chức năng trên PAI. Kết quả TGA cho thấy các màng lai có độ ổn định nhiệt tốt. Theo các thử nghiệm kéo căng cơ học, độ bền kéo và mô đun Young của các composite MWCNT-Gl/PAI tăng lên khi hàm lượng MWCNTs-Gl tăng.

Từ khóa

#ống nano carbon #glucose #chức năng hóa #composite #poly(amide-imide) #TGA #độ bền kéo #mô đun Young

Tài liệu tham khảo

Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58 Andrews R, Weisenberger M (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8:31–37 Barski M, Kędziora P, Chwał M (2013) Carbon nanotube/polymer nanocomposites: a brief modeling overview. Key Eng Mater 542:29–42 Kwon SY, Kwon IM, Kim Y-G, Lee S, Seo Y-S (2013) A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena. Carbon 55:285–290 Shanmugharaj AM, Hun Ryu S (2013) Influence of aminosilane-functionalized carbon nanotubes on the rheometric, mechanical, electrical and thermal degradation properties of epoxidized natural rubber nanocomposites. Polym Int 62(10):1433–1441 Mallakpour S, Zadehnazari A (2014) Thermal and mechanical stabilities of composite films from thiadiazol bearing poly(amide-thioester-imide) and multiwall carbon nanotubes by solution compounding. Polym Bull 71(1):207–225 Mun SC, Kim M, Prakashan K, Jung HJ, Son Y, Park OO (2014) A new approach to determine rheological percolation of carbon nanotubes in microstructured polymer matrices. Carbon 67:64–71 Kong KTS, Mariatti M, Rashid AA, Busfield JJC (2012) Effect of processing methods and functional groups on the properties of multi-walled carbon nanotube filled poly(dimethyl siloxane) composites. Polym Bull 69(8):937–953 Semaan C, Pecastaings G, Schappacher M, Soum A (2012) The preparation of carbon nanotube/poly(ethylene oxide) composites using amphiphilic block copolymers. Polym Bull 68(2):465–481 Mallakpour S, Zadehnazari A (2013) The production of functionalized multiwall carbon nanotube/amino acid-based poly(amide-imide) composites containing a pendant dopamine moiety. Carbon 56:27–37 Saha S, Saha U, Singh JP, Goswami TH (2013) Thermal and mechanical properties of homogeneous ternary nanocomposites of regioregular poly(3-hexylthiophene)-wrapped multiwalled carbon nanotube dispersed in thermoplastic polyurethane: Dynamic- and thermomechanical analysis. J Appl Polym Sci 128(3):2109–2120 Song ZX, Ding W, Si JH, Yun F, Liu CL, Zhu J, Hou X (2013) Synthesis and semiconductor characteristics of poly[(2-methoxy, 5-octoxy) 1,4-phenylenevinylene-carbon nanotube composites. Adv Mater Res 651:159–162 Szentes A, Varga C, Horvath G, Bartha L, Konya Z, Haspel H, Szel J, Kukovecz A (2012) Electrical resistivity and thermal properties of compatibilized multi-walled carbon nanotube/polypropylene composites. Express Polym Lett 6(6):494–502 Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401 Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35(7):837–867 Kuzmany H, Kukovecz A, Simon F, Holzweber M, Kramberger C, Pichler T (2004) Functionalization of carbon nanotubes. Synth Met 141(1):113–122 Leinonen H, Pettersson M, Lajunen M (2011) Water-soluble carbon nanotubes through sugar azide functionalization. Carbon 49(4):1299–1304 Murugan E, Vimala G (2011) Effective functionalization of multiwalled carbon nanotube with amphiphilic poly(propyleneimine) dendrimer carrying silver nanoparticles for better dispersability and antimicrobial activity. J Colloid Int Sci 357(2):354–365 Das S, Irin F, Tanvir Ahmed HS, Cortinas AB, Wajid AS, Parviz D, Jankowski AF, Kato M, Green MJ (2012) Non-covalent functionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly(vinyl alcohol) composites. Polymer 53(12):2485–2494 Koysuren O, Karaman M, Ozyurt D (2013) Effect of noncovalent chemical modification on the electrical conductivity and tensile properties of poly(methyl methacrylate)/carbon nanotube composites. J Appl Polym Sci 127(6):4557–4563 Martinez-Hernandez AL, Velasco-Santos C, Castano VM (2010) Carbon nanotubes composites: processing, grafting and mechanical and thermal properties. Curr Nanosci 6(1):12 Mallakpour S, Hatami M, Ensafi AA, Karimi-Maleh H (2011) Synthesis and characterization of novel dopamine-derivative: application of modified multi-wall carbon nanotubes paste electrode for electrochemical investigation. Chin Chem Lett 22(2):185–188 Mallakpour S, Hajipour AR, Hassan Shahmohammadi M (2003) Direct polycondensation of N-trimellitylimido-l-isoleucine with aromatic diamines. J Appl Polym Sci 89(1):116–122 Mallakpour S, Zadehnazari A (2013) One-pot synthesis of glucose functionalized multi-walled carbon nanotubes: dispersion in hydroxylated poly(amide-imide) composites and their thermo-mechanical properties. Polymer 54(23):6329–6338 Mallakpour S, Zadehnazari A (2011) Advances in synthetic optically active condensation polymers—a review. Express Polym Lett 5(2):142–181 Mallakpour S, Zadehnazari A (2012) Synergic effects of molten ionic liquid and microwave irradiation in preparation of optically active nanostructured poly(amide-imide)s containing amino acid and dopamine moiety. Polym Plast Technol Eng 51(11):1090–1096 Mallakpour S, Zadehnazari A (2013) Functionalization of multi-wall carbon nanotubes with amino acid and its influence on the properties of thiadiazol bearing poly(amide-thioester-imide) composites. Synth Met 169:1–11 Mallakpour S, Zadehnazari A (2014) A facile, efficient, and rapid covalent functionalization of multi-walled carbon nanotubes with natural amino acids under microwave irradiation. Prog Org Coat 77(3):679–684 Mallakpour S, Zadehnazari A (2014) A convenient strategy to functionalize carbon nanotubes with ascorbic acid and its effect on the physical and thermomechanical properties of poly(amide-imide) composites. J Solid State Chem 211:136–145 Lee H-J, Oh S-J, Choi J-Y, Kim JW, Han J, Tan L-S, Baek J-B (2005) In situ synthesis of poly(ethylene terephthalate) (PET) in ethylene glycol containing terephthalic acid and functionalized multiwalled carbon nanotubes (MWNTs) as an approach to MWNT/PET nanocomposites. Chem Mater 17(20):5057–5064 Hsiao S-H, Guo W, Lee W-F, Kung Y-C, Lee Y-J (2011) Synthesis and characterization of electrochromic poly(amide-imide)s bearing methoxy-substituted triphenylamine units. Mater Chem Phys 130(3):1086–1093 Perez-Cabero M, Rodrıguez-Ramos I, Guerrero-Ruız A (2003) Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor. J Catal 215(2):305–316 Amiri A, Maghrebi M, Baniadam M, Zeinali Heris S (2011) One-pot, efficient functionalization of multi-walled carbon nanotubes with diamines by microwave method. Appl Surf Sci 257(23):10261–10266 Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M (2003) Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2(11):731–734 Carty P, White S (1994) Flammability of acrylonitrile-butadiene-styrene/poly(vinyl chloride) blends; limiting oxygen index data. Polymer 35(25):5595–5596 Van Krevelen D (1975) Some basic aspects of flame resistance of polymeric materials. Polymer 16(8):615–620 Johnson P (1974) A general correlation of the flammability of natural and synthetic polymers. J Appl Polym Sci 18(2):491–504