Rapid alkalinization factor: function, regulation, and potential applications in agriculture

Ran Zhang1, Peng-Tao Shi1, Min Zhou1, H.E. Liu1, Xiaojing Xu1, Wenting Liu1, Kun-Ming Chen1
1State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China

Tóm tắt

AbstractRapid alkalinization factor (RALF) is widespread throughout the plant kingdom and controls many aspects of plant life. Current studies on the regulatory mechanism underlying RALF function mainly focus on Arabidopsis, but little is known about the role of RALF in crop plants. Here, we systematically and comprehensively analyzed the relation between RALF family genes from five important crops and those in the model plant Arabidopsis thaliana. Simultaneously, we summarized the functions of RALFs in controlling growth and developmental behavior using conservative motifs as cues and predicted the regulatory role of RALFs in cereal crops. In conclusion, RALF has considerable application potential in improving crop yields and increasing economic benefits. Using gene editing technology or taking advantage of RALF as a hormone additive are effective way to amplify the role of RALF in crop plants.

Từ khóa


Tài liệu tham khảo

Abarca A, Franck CM, Zipfel C (2021) Family-wide evaluation of RAPID ALKALINIZATION FACTOR peptides. Plant Physiol 187:996–1010. https://doi.org/10.1093/plphys/kiab308

Araya T, Miyamoto M, Wibowo J, Suzuki A, Kojima S, Tsuchiya YN, Sawa S, Fukuda H, von Wiren N, Takahashi H (2014) CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner. Proc Natl Acad Sci U S A 111:2029–2034. https://doi.org/10.1073/pnas.1319953111

Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041. https://doi.org/10.1104/pp.113.222372

Barbez E, Dunser K, Gaidora A, Lendl T, Busch W (2017) Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 114:E4884–E4893. https://doi.org/10.1073/pnas.1613499114

Belkhadir Y, Jaillais Y (2015) The molecular circuitry of brassinosteroid signaling. New Phytol 206:522–540. https://doi.org/10.1111/nph.13269

Berger D, Altmann TJG, development (2000) A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev 14:1119–1131. https://doi.org/10.1101/gad.14.9.1119

Bergonci T, Silva-Filho MC, Moura DS (2014b) Antagonistic relationship between AtRALF1 and brassinosteroid regulates cell expansion-related genes. Plant Signal Behav 9:e976146. https://doi.org/10.4161/15592324.2014.976146

Bergonci T, Ribeiro B, Ceciliato PH, Guerrero-Abad JC, Silva-Filho MC, Moura DS (2014a) Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation. J Exp Bot 65:2219–2230. https://doi.org/10.1093/jxb/eru099

Betti F, Ladera-Carmona MJ, Weits DA, Ferri G, Iacopino S, Novi G, Svezia B, Kunkowska AB, Santaniello A, Piaggesi A, Loreti E, Perata P (2021) Exogenous miRNAs induce post-transcriptional gene silencing in plants. Nat Plants 7:1379–1388. https://doi.org/10.1038/s41477-021-01005-w

Boisson-Dernier A, Lituiev DS, Nestorova A, Franck CM, Thirugnanarajah S, Grossniklaus U (2013) ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. PLoS Biol 11:e1001719. https://doi.org/10.1371/journal.pbio.1001719

Boisson-Dernier A, Roy S, Kritsas K, Grobei MA, Jaciubek M, Schroeder JI, Grossniklaus U (2009) Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136:3279–3288. https://doi.org/10.1242/dev.040071

Boisson-Dernier A, Kessler SA, Grossniklaus U (2011) The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals. J Exp Bot 62:1581–1591. https://doi.org/10.1093/jxb/erq445

Boisson-Dernier A, Franck CM, Lituiev DS, Grossniklaus U (2015) Receptor-like cytoplasmic kinase MARIS functions downstream of CrRLK1L-dependent signaling during tip growth. Proc Natl Acad Sci U S A 112:12211–12216. https://doi.org/10.1073/pnas.1512375112

Campbell L, Turner SR (2017) A Comprehensive Analysis of RALF Proteins in Green Plants Suggests There Are Two Distinct Functional Groups. Front Plant Sci 8:37. https://doi.org/10.3389/fpls.2017.00037

Campos WF, Dressano K, Ceciliato PHO, Guerrero-Abad JC, Silva AL, Fiori CS, Morato do Canto A, Bergonci T, Claus LAN, Silva-Filho MC, Moura DS, (2018) Arabidopsis thaliana rapid alkalinization factor 1-mediated root growth inhibition is dependent on calmodulin-like protein 38. J Biol Chem 293:2159–2171. https://doi.org/10.1074/jbc.M117.808881

Cao J, Shi F (2012) Evolution of the RALF Gene Family in Plants: Gene Duplication and Selection Patterns. Evol Bioinform Online 8:271–292. https://doi.org/10.4137/EBO.S9652

Capron A, Gourgues M, Neiva LS, Faure JE, Berger F, Pagnussat G, Krishnan A, Alvarez-Mejia C, Vielle-Calzada JP, Lee YR, Liu B, Sundaresan V (2008) Maternal control of male-gamete delivery in Arabidopsis involves a putative GPI-anchored protein encoded by the LORELEI gene. Plant Cell 20:3038–3049. https://doi.org/10.1105/tpc.108.061713

Chakravorty D, Yu Y, Assmann SM (2018) A kinase-dead version of FERONIA receptor-like kinase has dose-dependent impacts on rosette morphology and RALF1-mediated stomatal movements. FEBS Lett 592:3429–3437. https://doi.org/10.1002/1873-3468.13249

Chen J, Yu F, Liu Y, Du C, Li X, Zhu S, Wang X, Lan W, Rodriguez PL, Liu X, Li D, Chen L, Luan S (2016) FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proc Natl Acad Sci U S A 113:E5519-5527. https://doi.org/10.1073/pnas.1608449113

Chen K, Ke R, Du M, Yi Y, Chen Y, Wang X, Yao L, Liu H, Hou X, Xiong L, Yang Y, Xie K (2022) A FLASH pipeline for arrayed CRISPR library construction and the gene function discovery of rice receptor-like kinases. Mol Plant 15:243–257. https://doi.org/10.1016/j.molp.2021.09.015

Chevalier E, Loubert-Hudon A, Matton DP (2013) ScRALF3, a secreted RALF-like peptide involved in cell-cell communication between the sporophyte and the female gametophyte in a solanaceous species. Plant J 73:1019–1033. https://doi.org/10.1111/tpj.12096

Guo H, Ye H, Li L, Yin YJPs, behavior, (2009b) A family of receptor-like kinases are regulated by BES1 and involved in plant growth in Arabidopsis thaliana. Plant Signal Behav 4:784–786. https://doi.org/10.4161/psb.4.8.9231

Cheung AY, Duan Q, Li C, James Liu MC, Wu HM (2022) Pollen-pistil interactions: It takes two to tangle but a molecular cast of many to deliver. Curr Opin Plant Biol 69:102279. https://doi.org/10.1016/j.pbi.2022.102279

Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23:1219–1230. https://doi.org/10.1105/tpc.111.084475

Combier JP, Küster H, Journet EP, Hohnjec N, Niebel AJMPMI (2008) Evidence for the Involvement in Nodulation of the Two Small Putative Regulatory Peptide-Encoding Genes MtRALFL1 and MtDVL1. Mol Plant Microbe Interact 21:1118–1127. https://doi.org/10.1094/MPMI-21-8-1118

Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16:537–552. https://doi.org/10.1038/nri.2016.77

Covey PA, Subbaiah CC, Parsons RL, Pearce G, Lay FT, Anderson MA, Ryan CA, Bedinger PA (2010) A pollen-specific RALF from tomato that regulates pollen tube elongation. Plant Physiol 153:703–715. https://doi.org/10.1104/pp.110.155457

De Samblanx G, Fernandez del Carmen A, Sijtsma L, Plasman H, Schaaper W, Posthuma G, Fant F, Meloen R, Broekaert W, Amerongen V, AJPr, (1996) Antifungal activity of synthetic 15-mer peptides based on the Rs-AFP2 (Raphanus sativus antifungal protein 2) sequence. Pept Res 9:262–268. https://doi.org/10.1159/000164070

Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404. https://doi.org/10.1111/j.1469-8137.2007.02128.x

Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T, Ehrhardt DW, Frommer WB, Sprunck S, Dresselhaus T, Grossmann G (2014) Male-female communication triggers calcium signatures during fertilization in Arabidopsis. Nat Commun 5:4645. https://doi.org/10.1038/ncomms5645

Dievart A, Gottin C, Perin C, Ranwez V, Chantret N (2020) Origin and Diversity of Plant Receptor-Like Kinases. Annu Rev Plant Biol 71:131–156. https://doi.org/10.1146/annurev-arplant-073019-025927

Dressano K, Ceciliato PHO, Silva AL, Guerrero-Abad JC, Bergonci T, Ortiz-Morea FA, Burger M, Silva-Filho MC, Moura DS (2017) BAK1 is involved in AtRALF1-induced inhibition of root cell expansion. PLoS Genet 13:e1007053. https://doi.org/10.1371/journal.pgen.1007053

Dresselhaus T, Sprunck S, Wessel GM (2016) Fertilization Mechanisms in Flowering Plants. Curr Biol 26:R125-139. https://doi.org/10.1016/j.cub.2015.12.032

Dunser K, Gupta S, Herger A, Feraru MI, Ringli C, Kleine-Vehn J (2019) Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J 38:https://doi.org/10.15252/embj.2018100353

Du C, Li X, Chen J, Chen W, Li B, Li C, Wang L, Li J, Zhao X, Lin J, Liu X, Luan S, Yu F (2016) Receptor kinase complex transmits RALF peptide signal to inhibit root growth in Arabidopsis. Proc Natl Acad Sci U S A 113:E8326–E8334. https://doi.org/10.1073/pnas.1609626113

Du S, Qu LJ, Xiao J (2018) Crystal structures of the extracellular domains of the CrRLK1L receptor-like kinases ANXUR1 and ANXUR2. Protein Sci 27:886–892. https://doi.org/10.1002/pro.3381

Duan Q, Kita D, Li C, Cheung AY, Wu HM (2010) FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci U S A 107:17821–17826. https://doi.org/10.1073/pnas.1005366107

Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L, Wu HM, Cheung AY (2014) Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun 5:3129. https://doi.org/10.1038/ncomms4129

Duan Q, Liu MJ, Kita D, Jordan SS, Yeh FJ, Yvon R, Carpenter H, Federico AN, Garcia-Valencia LE, Eyles SJ, Wang CS, Wu HM, Cheung AY (2020) FERONIA controls pectin- and nitric oxide-mediated male-female interaction. Nature 579:561–566. https://doi.org/10.1038/s41586-020-2106-2

Duan Z, Liu W, Li K, Duan W, Zhu S, Xing J, Chen T, Luo X (2022) Regulation of immune complex formation and signalling by FERONIA, a busy goddess in plant-microbe interactions. Mol Plant Pathol 23:1695–1700. https://doi.org/10.1111/mpp.13256

Dupuis I, Dumas CJPp, (1990) Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol 94:665–670

Endo S, Shinohara H, Matsubayashi Y, Fukuda HJCB (2013) A novel pollen-pistil interaction conferring high-temperature tolerance during reproduction via CLE45 signaling. 23:1670–1676. https://doi.org/10.1016/j.cub.2013.06.060

Feng H, Liu C, Fu R, Zhang M, Li H, Shen L, Wei Q, Sun X, Xu L, Ni B, Li C (2019) LORELEI-LIKE GPI-ANCHORED PROTEINS 2/3 Regulate Pollen Tube Growth as Chaperones and Coreceptors for ANXUR/BUPS Receptor Kinases in Arabidopsis. Mol Plant 12:1612–1623. https://doi.org/10.1016/j.molp.2019.09.004

Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu MC, Maman J, Steinhorst L, Schmitz-Thom I, Yvon R, Kudla J, Wu HM, Cheung AY, Dinneny JR (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca(2+) signaling. Curr Biol 28:666–675 e665. https://doi.org/10.1016/j.cub.2018.01.023

Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDJN (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446. https://doi.org/10.1038/nature01485

Frederick RO, Haruta M, Tonelli M, Lee W, Cornilescu G, Cornilescu CC, Sussman MR, Markley JL (2019) Function and solution structure of the Arabidopsis thaliana RALF8 peptide. Protein Sci 28:1115–1126. https://doi.org/10.1002/pro.3628

Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+ -ATPase by preventing interaction with 14–3-3 protein. Plant Cell 19:1617–1634. https://doi.org/10.1105/tpc.105.035626

Galindo-Trigo S, Blanco-Tourinan N, DeFalco TA, Wells ES, Gray JE, Zipfel C, Smith LM (2020) CrRLK1L receptor-like kinases HERK1 and ANJEA are female determinants of pollen tube reception. EMBO Rep 21:e48466. https://doi.org/10.15252/embr.201948466

Gao Q, Wang C, Xi Y, Shao Q, Li L, Luan S (2022) A receptor-channel trio conducts Ca(2+) signalling for pollen tube reception. Nature 607:534–539. https://doi.org/10.1038/s41586-022-04923-7

Gao Q, Wang C, Xi Y, Shao Q, Hou C, Li L, Luan S (2023) RALF signaling pathway activates MLO calcium channels to maintain pollen tube integrity. Cell Res 33:71–79. https://doi.org/10.1038/s41422-022-00754-3

Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu M-C, Luo X, Ruan H, García-Valencia LE, Zhong SJS (2017) Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 358:1596–1600. https://doi.org/10.1126/science.aao3642

Ge Z, Zhao Y, Liu MC, Zhou LZ, Wang L, Zhong S, Hou S, Jiang J, Liu T, Huang Q, Xiao J, Gu H, Wu HM, Dong J, Dresselhaus T, Cheung AY, Qu LJ (2019) LLG2/3 are co-receptors in BUPS/ANX-RALF signaling to regulate arabidopsis pollen tube integrity. Curr Biol 29:3256–3265 e3255. https://doi.org/10.1016/j.cub.2019.08.032

Ginanjar EF, Teh OK, Fujita T (2022) Characterisation of rapid alkalinisation factors in Physcomitrium patens reveals functional conservation in tip growth. New Phytol 233:2442–2457. https://doi.org/10.1111/nph.17942

Gjetting SK, Mahmood K, Shabala L, Kristensen A, Shabala S, Palmgren M, Fuglsang AT (2020) Evidence for multiple receptors mediating RALF-triggered Ca(2+) signaling and proton pump inhibition. Plant J 104:433–446. https://doi.org/10.1111/tpj.14935

Gonneau M, Desprez T, Martin M, Doblas VG, Bacete L, Miart F, Sormani R, Hematy K, Renou J, Landrein B, Murphy E, Van De Cotte B, Vernhettes S, De Smet I, Hofte H (2018) Receptor Kinase THESEUS1 Is a Rapid Alkalinization Factor 34 Receptor in Arabidopsis. Curr Biol 28:2452–2458 e2454. https://doi.org/10.1016/j.cub.2018.05.075

Gronnier J, Franck CM, Stegmann M, DeFalco TA, Abarca A, von Arx M, Dunser K, Lin W, Yang Z, Kleine-Vehn J, Ringli C, Zipfel C (2022) Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors. Elife 11:https://doi.org/10.7554/eLife.74162

Guo H, Li L, Ye H, Yu X, Algreen A, Yin YJPotNAoS, (2009a) Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci 106:7648–7653. https://doi.org/10.1073/pnas.0812346106

Guo H, Nolan TM, Song G, Liu S, Xie Z, Chen J, Schnable PS, Walley JW, Yin Y (2018) FERONIA receptor kinase contributes to plant immunity by suppressing Jasmonic Acid signaling in arabidopsis thaliana. Curr Biol 28:3316–3324 e3316. https://doi.org/10.1016/j.cub.2018.07.078

Gupta A, Rico-Medina A, Caño-Delgado AIJS (2020) The physiology of plant responses to drought. Science 368:266–269. https://doi.org/10.1126/science.aaz7614

Hamann T (2015) The plant cell wall integrity maintenance mechanism-concepts for organization and mode of action. Plant Cell Physiol 56:215–223. https://doi.org/10.1093/pcp/pcu164

Haruta M, Monshausen G, Gilroy S, Sussman MRJB (2008) A cytoplasmic Ca2+ functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: identification of AtRALF1 peptide. Biochemistry 47:6311–6321. https://doi.org/10.1021/bi8001488

Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014) A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–411. https://doi.org/10.1126/science.1244454

Hayashi Y, Tanoi K, Nishiyama H, Nakanishi TMJSS, Nutrition P (2005) Rhizosphere pH profile of rice plant influenced by Al treatment. Soil Science and Plant Nutrition 51:729–731. https://doi.org/10.1111/j.1747-0765.2005.tb00101.x

He YH, Zhang ZR, Xu YP, Chen SY, Cai XZ (2022) Genome-wide identification of rapid alkalinization factor family in brassica napus and functional analysis of BnRALF10 in immunity to Sclerotinia sclerotiorum. Front Plant Sci 13:877404. https://doi.org/10.3389/fpls.2022.877404

Hoelscher MP, Forner J, Calderone S, Kramer C, Taylor Z, Loiacono FV, Agrawal S, Karcher D, Moratti F, Kroop X, Bock R (2022) Expression strategies for the efficient synthesis of antimicrobial peptides in plastids. Nat Commun 13:5856. https://doi.org/10.1038/s41467-022-33516-1

Hoffmann RD, Olsen LI, Ezike CV, Pedersen JT, Manstretta R, Lopez-Marques RL, Palmgren M (2019) Roles of plasma membrane proton ATPases AHA2 and AHA7 in normal growth of roots and root hairs in Arabidopsis thaliana. Physiol Plant 166:848–861. https://doi.org/10.1111/ppl.12842

Huffaker A, Pearce G, Ryan CAJPotNAoS, (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A 103:10098–10103. https://doi.org/10.1073/pnas.0603727103

Igarashi D, Tsuda K, Katagiri F (2012) The peptide growth factor, phytosulfokine, attenuates pattern-triggered immunity. Plant J 71:194–204. https://doi.org/10.1111/j.1365-313X.2012.04950.x

Iwano M, Igarashi M, Tarutani Y, Kaothien-Nakayama P, Nakayama H, Moriyama H, Yakabe R, Entani T, Shimosato-Asano H, Ueki MJTPC (2014) A pollen coat–inducible autoinhibited Ca2+-ATPase expressed in stigmatic papilla cells is required for compatible pollination in the Brassicaceae. Plant Cell 26:636–649. https://doi.org/10.1105/tpc.113.121350

Jiang Y, Lahlali R, Karunakaran C, Warkentin TD, Davis AR, Bueckert RA (2019) Pollen, ovules, and pollination in pea: Success, failure, and resilience in heat. Plant Cell Environ 42:354–372. https://doi.org/10.1111/pce.13427

Jiang W, Li C, Li L, Li Y, Wang Z, Yu F, Yi F, Zhang J, Zhu JK, Zhang H, Li Y, Zhao C (2022) Genome-wide analysis of CqCrRLK1L and CqRALF gene families in Chenopodium quinoa and their roles in salt stress response. Front Plant Sci 13:918594. https://doi.org/10.3389/fpls.2022.918594

Jin Y, Yang H, Wei Z, Ma H, Ge XJMP (2013) Rice male development under drought stress: phenotypic changes and stage-dependent transcriptomic reprogramming. Mol Plant 6:1630–1645

Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones JD, Shirasu K, Menke F, Jones A, Zipfel C (2014) Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol Cell 54:43–55. https://doi.org/10.1016/j.molcel.2014.02.021

Kasahara RD, Maruyama D, Higashiyama T (2013) Fertilization recovery system is dependent on the number of pollen grains for efficient reproduction in plants. Plant Signal Behav 8:e23690. https://doi.org/10.4161/psb.23690

Kessler SA, Lindner H, Jones DS, Grossniklaus U (2015) Functional analysis of related CrRLK1L receptor-like kinases in pollen tube reception. EMBO Rep 16:107–115. https://doi.org/10.15252/embr.201438801

Kou X, Sun J, Wang P, Wang D, Cao P, Lin J, Chang Y, Zhang S, Wu J (2021) PbrRALF2-elicited reactive oxygen species signaling is mediated by the PbrCrRLK1L13-PbrMPK18 module in pear pollen tubes. Hortic Res 8:222. https://doi.org/10.1038/s41438-021-00684-y

Li C, Yeh FL, Cheung AY, Duan Q, Kita D, Liu MC, Maman J, Luu EJ, Wu BW, Gates L, Jalal M, Kwong A, Carpenter H, Wu HM (2015) Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. Elife 4:https://doi.org/10.7554/eLife.06587

Li C, Liu X, Qiang X, Li X, Li X, Zhu S, Wang L, Wang Y, Liao H, Luan S, Yu F (2018) EBP1 nuclear accumulation negatively feeds back on FERONIA-mediated RALF1 signaling. PLoS Biol 16:e2006340. https://doi.org/10.1371/journal.pbio.2006340

Li L, Chen H, Alotaibi SS, Pencik A, Adamowski M, Novak O, Friml J (2022) RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis. Proc Natl Acad Sci U S A 119:e2121058119. https://doi.org/10.1073/pnas.2121058119

Li L, Li M, Yu L, Zhou Z, Liang X, Liu Z, Cai G, Gao L, Zhang X, Wang Y, Chen S, Zhou JM (2014) The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15:329–338. https://doi.org/10.1016/j.chom.2014.02.009

Li L, Verstraeten I, Roosjen M, Takahashi K, Rodriguez L, Merrin J, Chen J, Shabala L, Smet W, Ren H, Vanneste S, Shabala S, De Rybel B, Weijers D, Kinoshita T, Gray WM, Friml J (2021) Cell surface and intracellular auxin signalling for H(+) fluxes in root growth. Nature 599:273–277. https://doi.org/10.1038/s41586-021-04037-6

Lin W, Tang W, Pan X, Huang A, Gao X, Anderson CT, Yang Z (2022) Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Curr Biol 32:497–507 e494. https://doi.org/10.1016/j.cub.2021.11.030

Liu L, Song W, Huang S, Jiang K, Moriwaki Y, Wang Y, Men Y, Zhang D, Wen X, Han Z, Chai J, Guo H (2022a) Extracellular pH sensing by plant cell-surface peptide-receptor complexes. Cell 185:3341–3355 e3313. https://doi.org/10.1016/j.cell.2022.07.012

Liu X, Castro C, Wang Y, Noble J, Ponvert N, Bundy M, Hoel C, Shpak E, Palanivelu R (2016) The Role of LORELEI in Pollen Tube Reception at the Interface of the Synergid Cell and Pollen Tube Requires the Modified Eight-Cysteine Motif and the Receptor-Like Kinase FERONIA. Plant Cell 28:1035–1052. https://doi.org/10.1105/tpc.15.00703

Liu PL, Du L, Huang Y, Gao SM, Yu M (2017a) Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol Biol 17:47. https://doi.org/10.1186/s12862-017-0891-5

Liu X, Zhang H, Jiao H, Li L, Qiao X, Fabrice MR, Wu J, Zhang S (2017b) Expansion and evolutionary patterns of cysteine-rich peptides in plants. BMC Genomics 18:610. https://doi.org/10.1186/s12864-017-3948-3

Liu P, Haruta M, Minkoff BB, Sussman MR (2018) Probing a Plant Plasma Membrane Receptor Kinase’s Three-Dimensional Structure Using Mass Spectrometry-Based Protein Footprinting. Biochemistry 57:5159–5168. https://doi.org/10.1021/acs.biochem.8b00471

Liu J, Elmore JM, Lin ZJ, Coaker G (2011) A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor. Cell Host Microbe 9:137–146. https://doi.org/10.1016/j.chom.2011.01.010

Liu C, Shen L, Xiao Y, Vyshedsky D, Peng C, Sun X, Liu Z, Cheng L, Zhang H, Han ZJS (2021) Pollen PCP-B peptides unlock a stigma peptide–receptor kinase gating mechanism for pollination. Science 372:171–175. https://doi.org/10.1126/science.abc6107

Liu Y, Chen Y, Jiang H, Shui Z, Zhong Y, Shang J, Yang H, Sun X, Du J (2022b) Genome-wide characterization of soybean RALF genes and their expression responses to Fusarium oxysporum. Front Plant Sci 13:1006028. https://doi.org/10.3389/fpls.2022.1006028

López-García B, González-Candelas L, Pérez-Payá E, Marcos JFJMP-MI (2000) Identification and characterization of a hexapeptide with activity against phytopathogenic fungi that cause postharvest decay in fruits. Mol Plant Microbe Interact 13:837–846. https://doi.org/10.1094/MPMI.2000.13.8.837

Loubert-Hudon A, Mazin BD, Chevalier E, Matton DP (2020) The ScRALF3 secreted peptide is involved in sporophyte to gametophyte signalling and affects pollen mitosis I. Plant Biol (stuttg) 22:13–20. https://doi.org/10.1111/plb.13046

Mamaeva A, Lyapina I, Knyazev A, Golub N, Mollaev T, Chudinova E, Elansky S, Babenko VV, Veselovsky VA, Klimina KM, Gribova T, Kharlampieva D, Lazarev V, Fesenko I (2023) RALF peptides modulate immune response in the moss Physcomitrium patens. Front Plant Sci 14:1077301. https://doi.org/10.3389/fpls.2023.1077301

Mang H, Feng B, Hu Z, Boisson-Dernier A, Franck CM, Meng X, Huang Y, Zhou J, Xu G, Wang T, Shan L, He P (2017) Differential Regulation of Two-Tiered Plant Immunity and Sexual Reproduction by ANXUR Receptor-Like Kinases. Plant Cell 29:3140–3156. https://doi.org/10.1105/tpc.17.00464

Masachis S, Segorbe D, Turra D, Leon-Ruiz M, Furst U, El Ghalid M, Leonard G, Lopez-Berges MS, Richards TA, Felix G, Di Pietro A (2016) A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat Microbiol 1:16043. https://doi.org/10.1038/nmicrobiol.2016.43

Matos JL, Fiori CS, Silva-Filho MC, Moura DS (2008) A conserved dibasic site is essential for correct processing of the peptide hormone AtRALF1 in Arabidopsis thaliana. FEBS Lett 582:3343–3347. https://doi.org/10.1016/j.febslet.2008.08.025

Matsubayashi Y (2014) Posttranslationally modified small-peptide signals in plants. Annu Rev Plant Biol 65:385–413. https://doi.org/10.1146/annurev-arplant-050312-120122

Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A, Gagliardini V, Martínez-Bernardini A, Fabrice TN, Ringli C, Muschietti JPJS (2017) RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science 358:1600–1603. https://doi.org/10.1126/science.aao5467

Merino MC, Guidarelli M, Negrini F, De Biase D, Pession A, Baraldi E (2019) Induced expression of the Fragaria x ananassa Rapid alkalinization factor-33-like gene decreases anthracnose ontogenic resistance of unripe strawberry fruit stages. Mol Plant Pathol 20:1252–1263. https://doi.org/10.1111/mpp.12837

Mingossi FB, Matos JL, Rizzato AP, Medeiros AH, Falco MC, Silva-Filho MC, Moura DS (2010) SacRALF1, a peptide signal from the grass sugarcane (Saccharum spp.), is potentially involved in the regulation of tissue expansion. Plant Mol Biol 73:271–281. https://doi.org/10.1007/s11103-010-9613-8

Morato do Canto A, Ceciliato PH, Ribeiro B, Ortiz Morea FA, Franco Garcia AA, Silva-Filho MC, Moura DS, (2014) Biological activity of nine recombinant AtRALF peptides: implications for their perception and function in Arabidopsis. Plant Physiol Biochem 75:45–54. https://doi.org/10.1016/j.plaphy.2013.12.005

Moussu S, Augustin S, Roman AO, Broyart C, Santiago J (2018) Crystal structures of two tandem malectin-like receptor kinases involved in plant reproduction. Acta Crystallogr D Struct Biol 74:671–680. https://doi.org/10.1107/S205979831800774X

Moussu S, Broyart C, Santos-Fernandez G, Augustin S, Wehrle S, Grossniklaus U, Santiago J (2020) Structural basis for recognition of RALF peptides by LRX proteins during pollen tube growth. Proc Natl Acad Sci U S A 117:7494–7503. https://doi.org/10.1073/pnas.2000100117

Ngo QA, Vogler H, Lituiev DS, Nestorova A, Grossniklaus U (2014) A calcium dialog mediated by the FERONIA signal transduction pathway controls plant sperm delivery. Dev Cell 29:491–500. https://doi.org/10.1016/j.devcel.2014.04.008

Nicaise V, Joe A, Jeong BR, Korneli C, Boutrot F, Westedt I, Staiger D, Alfano JR, Zipfel C (2013) Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7. EMBO J 32:701–712. https://doi.org/10.1038/emboj.2013.15

Noble JA, Bielski NV, Liu MJ, DeFalco TA, Stegmann M, Nelson ADL, McNamara K, Sullivan B, Dinh KK, Khuu N, Hancock S, Shiu SH, Zipfel C, Cheung AY, Beilstein MA, Palanivelu R (2022) Evolutionary analysis of the LORELEI gene family in plants reveals regulatory subfunctionalization. Plant Physiol 190:2539–2556. https://doi.org/10.1093/plphys/kiac444

Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D, Kawano N, Sakakibara T, Namiki S, Itoh K, Otsuka K, Matsuzaki M, Nozaki H, Kuroiwa T, Nakano A, Kanaoka MM, Dresselhaus T, Sasaki N, Higashiyama T (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361. https://doi.org/10.1038/nature07882

Olsen AN, Mundy J, Skriver KJSB (2002) Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs. Silico Biol 2:441–451. https://doi.org/10.1080/02652030110070021

Pearce G, Moura DS, Stratmann J, Jr R, CAJPotNAoS, (2001) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc Natl Acad Sci 98:12843–12847. https://doi.org/10.1073/pnas.201416998

Pearce G, Yamaguchi Y, Munske G, Ryan CA (2010) Structure-activity studies of RALF, Rapid Alkalinization Factor, reveal an essential–YISY–motif. Peptides 31:1973–1977. https://doi.org/10.1016/j.peptides.2010.08.012

Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A, Holton N, Malinovsky FG, Tor M, de Vries S, Zipfel C (2011) The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23:2440–2455. https://doi.org/10.1105/tpc.111.084301

Schiøtt M, Romanowsky SM, Bækgaard L, Jakobsen MK, Palmgren MG, Harper JFJPotNAoS, (2004) A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci 101:9502–9507. https://doi.org/10.1073/pnas.0401542101

Schulze B, Mentzel T, Jehle AK, Mueller K, Beeler S, Boller T, Felix G, Chinchilla D (2010) Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J Biol Chem 285:9444–9451. https://doi.org/10.1074/jbc.M109.096842

Segonzac C, Monaghan J (2019) Modulation of plant innate immune signaling by small peptides. Curr Opin Plant Biol 51:22–28. https://doi.org/10.1016/j.pbi.2019.03.007

Shanmugaraj B, Bulaon CJI, Malla A, Phoolcharoen W (2021) Biotechnological Insights on the Expression and Production of Antimicrobial Peptides in Plants. Molecules 26:https://doi.org/10.3390/molecules26134032

Shen Q, Bourdais G, Pan H, Robatzek S, Tang D (2017) Arabidopsis glycosylphosphatidylinositol-anchored protein LLG1 associates with and modulates FLS2 to regulate innate immunity. Proc Natl Acad Sci U S A 114:5749–5754. https://doi.org/10.1073/pnas.1614468114

Song Y, Wilson AJ, Zhang XC, Thoms D, Sohrabi R, Song S, Geissmann Q, Liu Y, Walgren L, He SY, Haney CH (2021) FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species. Nat Plants 7:644–654. https://doi.org/10.1038/s41477-021-00914-0

Srivastava R, Liu JX, Guo H, Yin Y, Howell SH (2009) Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Plant J 59:930–939. https://doi.org/10.1111/j.1365-313X.2009.03926.x

Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A, Holton N, Belkhadir Y, Zipfel C (2017a) The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355:287–289. https://doi.org/10.1126/science.aal2541

Sui J, Xiao X, Yang J, Fan Y, Zhu S, Zhu J, Zhou B, Yu F, Tang C (2023) The rubber tree RALF peptide hormone and its receptor protein kinase FER implicates in rubber production. Plant Sci 326:111510. https://doi.org/10.1016/j.plantsci.2022.111510

Szurman-Zubrzycka M, Chwialkowska K, Niemira M, Kwasniewski M, Nawrot M, Gajecka M, Larsen PB, Szarejko I (2021) Aluminum or Low pH - Which Is the Bigger Enemy of Barley? Transcriptome Analysis of Barley Root Meristem Under Al and Low pH Stress. Front Genet 12:675260. https://doi.org/10.3389/fgene.2021.675260

Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi YJS (2014) Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346:343–346. https://doi.org/10.1126/science.1257800

Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki KJN (2018) A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556:235–238. https://doi.org/10.1038/s41586-018-0009-2

Tang J, Han Z, Sun Y, Zhang H, Gong X, Chai J (2015) Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1. Cell Res 25:110–120. https://doi.org/10.1038/cr.2014.161

Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue BP (2015) The Plant Peptidome: An Expanding Repertoire of Structural Features and Biological Functions. Plant Cell 27:2095–2118. https://doi.org/10.1105/tpc.15.00440

Temple BR, Jones AM (2007) The plant heterotrimeric G-protein complex. Annu Rev Plant Biol 58:249–266. https://doi.org/10.1146/annurev.arplant.58.032806.103827

Thynne E, Saur IML, Simbaqueba J, Ogilvie HA, Gonzalez-Cendales Y, Mead O, Taranto A, Catanzariti AM, McDonald MC, Schwessinger B, Jones DA, Rathjen JP, Solomon PS (2017) Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides. Mol Plant Pathol 18:811–824. https://doi.org/10.1111/mpp.12444

Wang L, Yang T, Lin Q, Wang B, Li X, Luan S, Yu F (2020a) Receptor kinase FERONIA regulates flowering time in Arabidopsis. BMC Plant Biol 20:26. https://doi.org/10.1186/s12870-019-2223-y

Wang L, Yang T, Wang B, Lin Q, Zhu S, Li C, Ma Y, Tang J, Xing J, Li XJSa (2020b) RALF1-FERONIA complex affects splicing dynamics to modulate stress responses and growth in plants. Science advances 6:eaaz1622. https://doi.org/10.1126/sciadv.aaz1622

Wang P, Yao S, Kosami KI, Guo T, Li J, Zhang Y, Fukao Y, Kaneko-Kawano T, Zhang H, She YM, Wang P, Xing W, Hanada K, Liu R, Kawano Y (2020c) Identification of endogenous small peptides involved in rice immunity through transcriptomics- and proteomics-based screening. Plant Biotechnol J 18:415–428. https://doi.org/10.1111/pbi.13208

Wang X, Zhang N, Zhang L, He Y, Cai C, Zhou J, Li J, Meng X (2021) Perception of the pathogen-induced peptide RGF7 by the receptor-like kinases RGI4 and RGI5 triggers innate immunity in Arabidopsis thaliana. New Phytol 230:1110–1125. https://doi.org/10.1111/nph.17197

Wieghaus A, Prufer D, Schulze Gronover C (2019) Loss of function mutation of the Rapid Alkalinization Factor (RALF1)-like peptide in the dandelion Taraxacum koksaghyz entails a high-biomass taproot phenotype. PLoS One 14:e0217454. https://doi.org/10.1371/journal.pone.0217454

Wood AKM, Walker C, Lee WS, Urban M, Hammond-Kosack KE (2020) Functional evaluation of a homologue of plant rapid alkalinisation factor (RALF) peptides in Fusarium graminearum. Fungal Biol 124:753–765. https://doi.org/10.1016/j.funbio.2020.05.001

Wu J, Kurten EL, Monshausen G, Hummel GM, Gilroy S, Baldwin IT (2007) NaRALF, a peptide signal essential for the regulation of root hair tip apoplastic pH in Nicotiana attenuata, is required for root hair development and plant growth in native soils. Plant J 52:877–890. https://doi.org/10.1111/j.1365-313X.2007.03289.x

Xiao Y, Stegmann M, Han Z, DeFalco TA, Parys K, Xu L, Belkhadir Y, Zipfel C, Chai J (2019) Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature 572:270–274. https://doi.org/10.1038/s41586-019-1409-7

Xie Y, Sun P, Li Z, Zhang F, You C, Zhang Z (2022) FERONIA Receptor Kinase Integrates with Hormone Signaling to Regulate Plant Growth, Development, and Responses to Environmental Stimuli. Int J Mol Sci 23:https://doi.org/10.3390/ijms23073730

Xu Y, Magwanga RO, Jin D, Cai X, Hou Y, Juyun Z, Agong SG, Wang K, Liu F, Zhou Z (2020) Comparative transcriptome analysis reveals evolutionary divergence and shared network of cold and salt stress response in diploid D-genome cotton. BMC Plant Biol 20:518. https://doi.org/10.1186/s12870-020-02726-4

Yamaguchi Y, Pearce G, Ryan CAJPotNAoS, (2006) The cell surface leucine-rich repeat receptor for At Pep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci 103:10104–10109. https://doi.org/10.1073/pnas.0603729103

Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22:508–522. https://doi.org/10.1105/tpc.109.068874

Yang Y, Wang Q, Geng M, Guo Z, Zhao Z (2011) Rhizosphere pH difference regulated by plasma membrane H+-ATPase is related to differential Al tolerance of two wheat cultivars. Plant, Soil Environment 57:201–206. https://doi.org/10.17221/419/2010-PSE

Yang G, Qu M, Xu G, Li Y, Li X, Feng Y, Xiao H, He Y, Shabala S, Demidchik V, Liu J, Yu M (2022) pH-Dependent mitigation of aluminum toxicity in pea (Pisum sativum) roots by boron. Plant Sci 318:111208. https://doi.org/10.1016/j.plantsci.2022.111208

Yang H, Matsubayashi Y, Nakamura K, Sakagami YJPP (2001) Diversity of Arabidopsis genes encoding precursors for phytosulfokine, a peptide growth factor. Plant Physiol 127:842–851. https://doi.org/10.1104/pp.010452

Yu Y, Assmann SM (2015) The heterotrimeric G-protein beta subunit, AGB1, plays multiple roles in the Arabidopsis salinity response. Plant Cell Environ 38:2143–2156. https://doi.org/10.1111/pce.12542

Yu Y, Assmann SM (2018) Inter-relationships between the heterotrimeric Gbeta subunit AGB1, the receptor-like kinase FERONIA, and RALF1 in salinity response. Plant Cell Environ 41:2475–2489. https://doi.org/10.1111/pce.13370

Yu F, Qian L, Nibau C, Duan Q, Kita D, Levasseur K, Li X, Lu C, Li H, Hou C, Li L, Buchanan BB, Chen L, Cheung AY, Li D, Luan S (2012) FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc Natl Acad Sci U S A 109:14693–14698. https://doi.org/10.1073/pnas.1212547109

Yu M, Li R, Cui Y, Chen W, Li B, Zhang X, Bu Y, Cao Y, Xing J, Jewaria PK, Li X, Bhalerao RP, Yu F, Lin J (2020) The RALF1-FERONIA interaction modulates endocytosis to mediate control of root growth in Arabidopsis. Development 147:https://doi.org/10.1242/dev.189902

Yu Y, Chakravorty D, Assmann SM (2018) The G Protein beta-Subunit, AGB1, Interacts with FERONIA in RALF1-Regulated Stomatal Movement. Plant Physiol 176:2426–2440. https://doi.org/10.1104/pp.17.01277

Zhang X, Peng H, Zhu S, Xing J, Li X, Zhu Z, Zheng J, Wang L, Wang B, Chen J, Ming Z, Yao K, Jian J, Luan S, Coleman-Derr D, Liao H, Peng Y, Peng D, Yu F (2020a) Nematode-Encoded RALF Peptide Mimics Facilitate Parasitism of Plants through the FERONIA Receptor Kinase. Mol Plant 13:1434–1454. https://doi.org/10.1016/j.molp.2020.08.014

Zhang Y, Ren Q, Tang X, Liu S, Malzahn AA, Zhou J, Wang J, Yin D, Pan C, Yuan M, Huang L, Yang H, Zhao Y, Fang Q, Zheng X, Tian L, Cheng Y, Le Y, McCoy B, Franklin L, Selengut JD, Mount SM, Que Q, Zhang Y, Qi Y (2021b) Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nat Commun 12:1944. https://doi.org/10.1038/s41467-021-22330-w

Zhao C, Zayed O, Yu Z, Jiang W, Zhu P, Hsu CC, Zhang L, Tao WA, Lozano-Duran R, Zhu JK (2018) Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc Natl Acad Sci U S A 115:13123–13128. https://doi.org/10.1073/pnas.1816991115

Zhao C, Jiang W, Zayed O, Liu X, Tang K, Nie W, Li Y, Xie S, Li Y, Long T, Liu L, Zhu Y, Zhao Y, Zhu JK (2021) The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. Natl Sci Rev 8:nwaa149. https://doi.org/10.1093/nsr/nwaa149

Zhang X, Wang D, Chen J, Wu D, Feng X, Yu F (2021a) Nematode RALF-Like 1 Targets Soybean Malectin-Like Receptor Kinase to Facilitate Parasitism. Front Plant Sci 12:775508. https://doi.org/10.3389/fpls.2021.775508

Zhang X, Yang Z, Wu D, Yu F (2020b) RALF-FERONIA Signaling: Linking Plant Immune Response with Cell Growth. Plant Commun 1:100084. https://doi.org/10.1016/j.xplc.2020.100084

Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF, He SY, Dong X (2012) Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11:587–596. https://doi.org/10.1016/j.chom.2012.04.014

Zhong S, Li L, Wang Z, Ge Z, Li Q, Bleckmann A, Wang J, Song Z, Shi Y, Liu TJS (2022) RALF peptide signaling controls the polytubey block in Arabidopsis. Science 375:290–296. https://doi.org/10.1126/science.abl4683

Zhou X, Lu J, Zhang Y, Guo J, Lin W, Van Norman JM, Qin Y, Zhu X, Yang Z (2021) Membrane receptor-mediated mechano-transduction maintains cell integrity during pollen tube growth within the pistil. Dev Cell 56:1030–1042 e1036. https://doi.org/10.1016/j.devcel.2021.02.030

Ziemann S, van der Linde K, Lahrmann U, Acar B, Kaschani F, Colby T, Kaiser M, Ding Y, Schmelz E, Huffaker A, Holton N, Zipfel C, Doehlemann G (2018) An apoplastic peptide activates salicylic acid signalling in maize. Nat Plants 4:172–180. https://doi.org/10.1038/s41477-018-0116-y

Zhu JY, Sae-Seaw J, Wang ZY (2013) Brassinosteroid Signalling Development 140:1615–1620. https://doi.org/10.1242/dev.060590

Zhu L, Chu LC, Liang Y, Zhang XQ, Chen LQ, Ye D (2018) The Arabidopsis CrRLK1L protein kinases BUPS1 and BUPS2 are required for normal growth of pollen tubes in the pistil. Plant J 95:474–486. https://doi.org/10.1111/tpj.13963

Zhu S, Estevez JM, Liao H, Zhu Y, Yang T, Li C, Wang Y, Li L, Liu X, Pacheco JM, Guo H, Yu F (2020) The RALF1-FERONIA Complex Phosphorylates eIF4E1 to Promote Protein Synthesis and Polar Root Hair Growth. Mol Plant 13:698–716. https://doi.org/10.1016/j.molp.2019.12.014

Zhu S, Fu Q, Xu F, Zheng H, Yu F (2021) New paradigms in cell adaptation: decades of discoveries on the CrRLK1L receptor kinase signalling network. New Phytol 232:1168–1183. https://doi.org/10.1111/nph.17683