Rapid Lithium Diffusion in Order@Disorder Pathways for Fast‐Charging Graphite Anodes

SMALL STRUCTURES - Tập 1 Số 1 - 2020
Wenlong Cai1, Chong Yan2,1, Yuxing Yao1, Lei Xu2, Rui Xu2, Lili Jiang1,3, Jia‐Qi Huang2, Qiang Zhang1
1Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
2Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
3Key Laboratory for Special Functional Materials in Jilin Provincial Universities, Jilin Institute of Chemical Technology, Jilin 132022, China

Tóm tắt

The use of graphite anode renders practical lithium‐ion batteries for effective energy storage. However, graphite anode is the bottleneck to achieve the fast charging of a battery, ascribed to its low operating potential and corresponding incidental lithium plating. Herein the principle of a thin nanoscale layer on the graphite surface to improve charging capability is investigated by applying a three‐electrode device to precisely record the working behavior. The Li+ diffusion rate is significantly improved by coating a nanoscale turbostratic carbon layer, in which abundant active sites and additional fast Li+ diffusion pathways at the basal‐plane side of graphite sheets render small polarization in a working battery. This fresh understanding enriches the fundamental insights into enhancing the rate performance and facilitating the practical applications of graphite in fast‐charging batteries.

Từ khóa


Tài liệu tham khảo

10.1039/c2jm31015e

10.1073/pnas.1807115115

10.1021/acsenergylett.9b01926

10.1002/anie.201914768

10.1016/j.jechem.2019.11.024

10.1016/j.joule.2019.09.021

10.1039/C4CC09825K

10.1016/j.jpowsour.2012.07.044

10.1016/j.jechem.2020.02.052

10.1038/s41467-017-00973-y

10.1039/C6RA19482F

10.1016/j.nanoen.2019.103903

10.1016/j.jpowsour.2019.03.077

10.1016/j.electacta.2014.02.008

10.1038/ncomms7362

10.1016/j.electacta.2018.01.058

10.1002/smll.201805389

10.1021/ja412807w

10.1016/j.jpowsour.2019.03.027

10.1016/j.jpowsour.2016.05.094

10.1016/j.jpowsour.2015.03.036

10.1016/j.jpowsour.2018.10.002

10.1002/adma.201403880

10.1016/j.electacta.2007.09.058

10.1039/C1CC14764A

10.1002/ente.201801078

10.1002/anie.201908874

10.1021/nl034376x

10.1016/j.carbon.2015.07.030

10.1007/s10800-008-9761-6

10.1039/b316702j

10.1016/j.ensm.2019.12.020

10.1016/j.jechem.2017.09.014

10.1016/S0378-7753(00)00601-7

10.1149/2.0451514jes

10.1149/1.1392512

10.1002/ente.201900273

10.1002/aenm.201904152

10.1021/jp068691u

10.1038/nature07877

10.1021/jz100188d

10.1016/j.jpowsour.2017.11.038

10.1039/C8QI00173A

10.1016/S1452-3981(23)13343-8

10.1021/acsenergylett.9b01236

10.1149/1.1391556

10.1038/nature07853