Rapakivi granites in the geological history of the earth. Part 1, magmatic associations with rapakivi granites: Age, geochemistry, and tectonic setting

Stratigraphy and Geological Correlation - Tập 17 - Trang 235-258 - 2009
A. M. Larin1
1Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, St. Petersburg, Russia

Tóm tắt

Rapakivi granites characteristic practically of all old platforms are greatly variable in age and irregularly distributed over the globe. Four types of magmatic associations, which include rapakivi granites, are represented by anorthosite-mangerite-charnockite-rapakivi granite, anorthosite-mangerite-rapakivi-peralkaline granite, gabbro-rapakivi granite-foidite, and rapakivi granite-shoshonite rock series. Granitoids of these associations used to be divided into the following three groups: (1) classical rapakivi granites from magmatic associations of the first three types, which correspond to subalkaline high-K and high-Fe reduced A2-type granites exemplifying the plumasitic trend of evolution; (2) peralkaline granites of the second magmatic association representing the highly differentiated A1-type reduced granites of Na-series, which are extremely enriched in incompatible elements and show the agpaitic trend of evolution; and (3) subalkaline oxidized granites of the fourth magmatic association ranging in composition from potassic A2-type granites to S-granites. Magmatic complexes including rapakivi granites originated during the geochronological interval that spanned three supercontinental cycles 2.7−1.8, 1.8−1.0 and 1.0−0.55 Ga ago. The onset and end of each cycle constrained the assembly periods of supercontinents and the formation epochs of predominantly anorthosite-charnockite complexes of the anorthosite-mangerite-charnockite-rapakivi granite magmatic association. Peak of the respective magmatism at the time of Grenvillian Orogeny signified the transition from the tectonics of small lithospheric plates to the subsequent plate tectonics of the current type. The outburst of rapakivi granite magmatism was typical of the second cycle exclusively. The anorthosite-mangerite-charnockite-rapakivi granite magmatic series associated with this magmatism originated in back-arc settings, if we consider the latter in a broad sense as corresponding to the rear parts of peripheral orogens whose evolution lasted from ∼1.9 to 1.0 Ga. Magmatism of this kind was most active 1.8−1.3 Ga ago and represented the distal effect of subduction or collisional events along the convergent boundaries of lithospheric plates. An important factor that favored the emplacement of rapakivi granites and anorthosites in a huge volume was the thermal and rheologic state of the lithosphere inherited from antedating orogenic events, first of all from the event ∼1.9 Ga ago, which was unique in terms of heat capacity transferred into the lithosphere. Anorthosite-mangerite-rapakivi granite-peralkaline granite magmatism is connected with activity of the mantle plums only. Degradation of the rapakivi granite magmatism toward the terminal Proterozoic was controlled by the general cooling of the Earth in the course of the steady dissipation of its endogenic energy, as these processes became accelerated since the Late Riphean

Tài liệu tham khảo

K.-I. Åhäll, J. Connelly, and T. S. Brewer, “Episodic Rapakivi Magmatism due to Distal Orogenesis? Correlation of 1.69−1.50 Ga Orogenic and Inboard ‘Anorogenic’ Events in the Baltic shield,” Geology 28, 823–826 (2000). Yu. V. Amelin, A. Beljaev, A. M. Larin, et al., “Salmi Batholith and Pitkäranta Ore Field in Soviet Karelia, Guide 33,” Ed. by I. Haapala, O. T. Rämö, and P. T. Salonsaari (Geol. Surv. Finland, 1991). Yu. V. Amelin, L. M. Heaman, V. M. Verchogliad, and V. M. Skobelev, “Geochronological Constraints on the Emplacement History of the Anorthosite-Rapakivi Granite Suite: U-Pb Zircon and Baddeleyite Study of the Korosten Complex, Ukraine,” Contrib. Mineral. Petrol.. 116, 411–419 (1994). I. C. Anderson, C. D. Frost, and B. R. Frost, “Petrogenesis of the Red Mountain Pluton, Laramie Anorthosite Complex, Wyoming: Implications for the Origin of A-type Granite,” Precambrian Res. 124, 243–267 (2003). J. L. Anderson, “Proterozoic Anorogenic Granite Plutonism of North America,” in Proterozoic Geology: Selected Papers from an International Proterozoic Symposium, Ed. by L. G. Medaris, C. W. Byers, D. M. Mickelson, and W. C. Shnaks, Mem. Geol. Soc. Am. 161, 133–154 (1983). J. L. Anderson and J. Morrison, “Ilmenite, Magnetite, and Peraluminous Mesoproterozoic Anorogenic Granites of Laurentia and Baltica,” Lithos 80, 45–60 (2005). U. Andersson, L. A. Neymark, and K. Billström, “Petrogenesis of the Mesoproterozoic (Subjotnian) Rapakivi Complexes of Central Sweden: Implications from U-Pb Zircon Ages Nd, Sr and Pb isotopes,” Trans. R. Soc. Edinburgh. Earth. Sci. 92, 201–228 (2002). L. D. Ashwal, Anorthosites (Springer, Berlin, 1993). K.-I. Åhäll, J. Connelly, and T. S. Brewer, “Episodic Rapakivi Magmatism due to Distal Orogenesis? Correlation of 1.69−1.50 Ga Orogenic and Inboard “Anorogenic“ Events in the Baltic shield,” Geology 28, 823–826 (2000). J. S. Bettencourt, R. M. Tosdal, W. B. Leite, and B. L. Payolla, “Mesoproterozoic Rapakivi Granites of the Rondônia Tin Province, South-Western Border of the Amazonian Craton, Brazil — Reconnaissance U-Pb Geochronology and Regional Implications,” Precambrian Res. 95, 41–67 (1999). R. Black and J.-P. Liegeois, “Cratons, Mobile Belts, Alkaline Rocks and Continental Lithospheric Mantle: The Pan-African Testimony,” J. Geol. Soc. London 150, 89–98 (1993). O. A. Bogatikov, Anorthosites (Nauka, Moscow, 1979) [in Russian]. B. Bonin, “Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal Sources? A Review,” Lithos 78, 1–24 (2004). B. Bonin, “A-Type Granites and Related Rocks: Evolution of a Concept, Problem and Prospects,” Lithos 97, 1–29 (2007). V. B. Buryanov, I. B. Makarenko, V. I. Starostenko, and O. V. Legostaeva, “Structure of the Earth’s Crust of the Korosten Pluton, Northern Ukrainian Shield, Based on 3-D Gravity Modeling,” in Proc. Joint Meeting of the EUROBRIDGE and SVEKALAPKO Projects: Archaean and Proterozoic Plate Tectonics, Geological and Geophysical Records, Ed. by J.S. Daly and S. Bogdanova (VSEGEI, St. Petersburg, 2001), pp. 9–10. I. S. E. Carmichael, “The Redox States of Basic and Silicic Magmas: A Reflection of Their Source Regions?” Contrib. Mineral. Petrol. 106, 129–141 (1991). K. C. Condie, “Episodic Continental Growth and Supercontinents: A Mantle Avalanche Connection?,” Earth Planet. Sci. Lett. 163, 97–108 (1998). K. C. Condie, Mantle Plumes and Their Record in Earth History (Cambridge University Press, Cambridge, 2001). K. C. Condie, “Breakup of a Paleoproterozoic supercontinent,” Gondwana Res. 5, 41–43 (2002). D. Corrigan and S. Hanmer, “Anorthosites and Related Granitoids in the Grenville Orogen: A Product of Convective Thinning of the Lithosphere?” Geology 25, 61–64 (1997). H. T. Costi, R. Dall’Agnol, and C.A. Moura, “Geology and Pb-Pb Geochronology of Paleoproterozoic Volcanic and Granitic Rocks of the Pitinga Province, Amazonian Craton, Northern Brazil,” Intern. Geology Rev. 42, 832–849 (2000). R. Dall’Agnol, H. T. Costi, A. A. da S. Leite, et al., “Rapakivi Granite from Brazil and Adjacent Areas,” Precambrian Res. 95, 9–39 (1999). T. J. Dewane and W. R. Van Schmus, “U-Pb Geochronology of the Wolf River Batholith, North-Central Wisconsin: Evidence of Successive Magmatism between 1484 Ma and 1468 Ma,” Precambrian Res. 157, 215–234 (2007). T. V. Donskaya, D. P. Gladkochub, V. P. Kovach, and A. M. Mazukabzov, “Petrogenesis of Early Proterozoic Postcollisional Granitoids in the Southern Siberian Craton,” Petrologiya 13(3), 253–279 (2005) [Petrology 13 (3), 229–252 (2005)]. G. N. Eby, “Chemical Subdivision of A-Type Granitoids: Petrogenetic and Tectonic Implications,” Geology 20, 641–644 (1992). S. Elo and A. Korja, “Geophysical Interpretation of the Crustal and Upper Mantle Structure in the Wiborg Rapakivi Granite Area, Southern Finland,” Precambrian Res. 64(1–4), 273–288 (1993). R. F. Emslie, M. A. Hamilton, and R. J. Theriault, “Petrogenesis of a Mid-Proterozoic Anorthosite-Mangerite-Charnockite-Granite (AMCG) Complex: Isotopic and Chemical Evidence from the Nain Plutonic Suite,” J. Geol. 102, 539–558 (1994). C. D. Frost and B. R. Frost, “Reduced Rapakivi-Type Granites: The Tholeite Connection,” Geology 25, 647–650 (1997). C. D. Frost, B. R. Frost, J. M. Bell, and K. R. Chamberlain, “The Relationship between A-Type Granites and Residual Magmas from Anorthosite: Evidence from the Northern Sherman Batholith, Laramie Mountains, Wyoming, USA,” Precambrian Res. 45, 45–71 (2002). V. A. Glebovitskii, “Correlation and Geodynamic Interpretation of Global Events in Archean and Early Proterozoic Structures of Laurasia,” Geol. Geofiz., No. 1, 56–63 (1996). A. M. Goodwin, Precambrian Geology (Academic, London, 1991). C. F. Gower, “The Evolution of the Grenville Province in Eastern Labrador, Canada,” in Precambrian Crustal Evolution in the North Atlantic Region, No. 12, 197–218 (1996). I. Haapala, S. Frindt, and J. Kandara, “Cretaceous Gross Spizkoppe and Klein Stocks in Namibia: Topaz-Bearing A-Type Granites Related to Continental Rifting and Mantle Plume,” Lithos 97, 174–192 (2007). I. Haapala, T. O. Rämö, and S. Frindt, “Comparison of Proterozoic and Phanerozoic rift-related basaltic-granitic magmatism,” Lithos 80, 1–32 (2005). A. W. Hofmann, “Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements,” in Treatise on Geochemistry, Vol. 2: The Mantle and Core, Ed. by R. W Carlson (Elsevier, Amsterdam, 2003), pp. 61–101. D. Konopelko, G. Biske, B. Belyatsky, et al., “Hercynian Post-Collisional Magmatism of the SE Tien Shan, Kyrgyzstan: Timing and Metallogenic Potential,” in Proc. International Field Symposium on Urumqi, China, 2003. Paleozoic Geodynamic Processes and Metallogeny of Chinese Altay and Tianshan, pp. 10–15. V. I. Kovalenko, V. V. Yarmolyuk, N. V. Vladykin, et al., “Epochs of Formation, Geodynamic Setting, and Sources of Rare-Metal Magmatism in Central Asia,” Petrologiya 10(3), 227–253 (2002) [Petrology 10 (3), 199–221 (2002)]. A. A. Krasnobaev, E. V. Bibikova, A. I. Stepanov, et al., “Geochronology and Genesis of the Berdyaush Massif (the Urals),” Izv. Akad. Nauk SSSR, Ser. Geol., No. 3, 3–23 (1984). A. M. Larin, “Types and Tectonic Position of Magmatic Associations with Rapakivi Granites,” in Trans. Intern. Sci. Conference on Geology And Metallogeny of Ultramafic-Mafic and Granitoid Intrusive Associations in Fold Regions, 10th Readings Dedicated to A.N. Zavaritsky (IIO IGG UrO RAN, OOO “IRA UTK”, Yekaterinburg, 2004), pp. 351–354 [in Russian]. A. M. Larin, Yu. V. Amelin, and L. A. Neymark, “Age and Genesis of Complex Skarn Ore in the Pitkjaranta Ore Field,” Geol. Rudn. Mestorozhdenii, No. 6, 15–33 (1991). A. M. Larin, Yu. V. Amelin, L. A. Neymark, and R. Sh. Krymsky, “The Origin of the 1.73-1.70 Ga Anorogenic Ulkan Volcano-Plutonic Complex, Siberian Platform, Russia: Inferences from Geochronological, Geochemical and Nd-Sr-Pb Isotopic Data,” Anais Acad. Brasil. Ciéncias 69(3), 295–312 (1997). A. M. Larin, A. B. Kotov, E. B. Sal’nikova, et al., “The Kalar Complex, Aldan-Stanovoi Shield, an Ancient Anorthosite-Mangerite-Charnockite-Granite Association: Geochronologic, Geochemical, and Isotopic-Geochemical Characteristics,” Petrologiya 14(1), 4–24 (2006a) [Petrology 14 (1), 2–20 (2006a)]. A. M. Larin, E. B. Sal’nikova, A. B. Kotov, et al., “The North Baikal Volcanoplutonic Belt: Age, Formation Duration, and Tectonic Setting,” Dokl. Akad. Nauk 392(4), 506–511 (2003) [Dokl. 392 (7), 963–967 (2003)]. A. M. Larin, E. B. Sal’nikova, A. B. Kotov, et al., “Early Proterozoic Syn- and Postcollision Granites in the Northern Part of the Baikal Fold Area,” Stratigr. Geol. Korrelyatsiya 14(5), 3–15 (2006b) [Stratigr. Geol. Correlation 14 (5), 463–474 (2006b)]. S. L. R. Lenharo, P. J. Pollard, and H. Born, “Petrology and Textural Evolution of Granites Associated with Tin and Rare-Metals Mineralization at the Pitinga Mine, Asmazonas, Brazil,” Lithos 66, 37–61 (2003). V. I. Levitskii, A. I. Mel’nikov, L. Z. Reznitskii, et al., “Postkinematic Early Proterozoic Granitoids in the Southwestern Siberian Platform: Geochronology, Geodynamic Typification,” Geol. Geofiz. 43(8), 717–732 (2002). J.-P. Liégeois, J. Navez, J. Hertogen, and R. Black, “Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic versus Alkaline and Peralkaline Granitoids. The Use of Sliding Normalisation,” Lithos 45, 1–28 (1998). L. I. Lobkovsky, A. M. Nikishin, and V. E. Khain, Current Problems of Geotectonics and Geodynamics (Nauchnyi Mir, Moscow, 2004) [in Russian]. G. Marki, S. Piazolo, W. Bauer, et al., “Pan-African Massif-Type Anorthosite from Central Dronning Maud Land, East Antarctica,” Geol. Jahrb. 96(10), 77–137 (2004). Sh. Maruyama and J. G. Liou, “Imitation of Ultra-High Pressure Metamorphism and Its Significance on the Proterozoic-Paleozoic Boundary,” The Island Arc 7, 6–35 (1998). R. R. Miller, L. M. Heaman, and T. C. Birkett, “U-Pb Zircon Age of the Strange Lake Peralkaline Complex: Implications for Mesoproterozoic Peralkaline Magmatism in North-Central Labrador,” Precambrian Res. 81, 67–82 (1997). J. N. Mitchell, J. S. Scoates, and C. D. Frost, “High-Al Gabbros in the Larami Anorthosite Complex, Wyoming: Implications for the Composition of Melt Parental to Proterozoic Anorthosite,” Contrib. Mineral. Petrol. 119, 166–180 (1995). L. A. Neymark, Yu. V. Amelin, and A. M. Larin, “Pb-Nd-Sr Isotopic and Geochemical Constraints on the Origin of the 1.54–1.56 Ga Salmi Rapakivi Granite-Anorthosite Batholith (Karelia, Russia),” Contrib. Mineral. Petrol. 50, 173–193 (1994). L. A. Neymark, A. M. Larin, A. A. Nemchin, et al., “Anorogenic Nature of Magmatism in the Northern Baikal Volcanic Belt: Evidence from Geochemical, Geochronological (U-Pb), and Isotopic (Pb, Nd) Data,” Petrologiya 6(2), 139–164 (1998) [Petrology 6 (2), 124–148 (1998)]. J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace Element Distribution Diagrams for the Tectonic Interpretation of Granite Rocks,” J. Petrol. 25,Pt. 4, 956–983 (1984). T. D. Peterson, O. Van Breemen, H. Sandeman, and B. Cousens, “Proterozoic (1.85–1.75 Ga) Igneous Suites of the Wesern Churchill Province: Granitoid and Ultrapotassic Magmatism in a Reworked Archean Hinterland,” Precambrian. Res. 119(1–4), 73–100 (2002). V. N. Puchkov, Paleogeodynamics of the Southern and Central Urals (Dauriya, Ufa, 2000) [in Russian]. O. T. Rämö and I. Haapala, “One Hundred Years of Rapakivi Granite,” Mineral. Petrol. 52, 129–185 (1995). J. J. W. Rogers, “A History of Continents in the Past Three Billion Years,” J. Geol. 104, 91–107 (1996). B. Ryan, “The Nain-Churchill Boundary and the Nain Plutonic Suite: A Regional Perspective on the Geologic Setting of the Voisey’s Bay Ni-Cu-Co Deposit,” Econ. Geol. 95, 703–724 (2000). P. T. Salonsaari, “Hybridisation in the Subvolcanic Jaala-Itti Complex and Its Petrogenetic Relation to Rapakivi Granites and Associated Mafic Rocks of Southeastern Finland,” Bull. Geol. Soc. Finland, No. 67, Pt. 1b, 1–104 (1995). A. D. Saunders, J. G. Fitton, P. D. Kempton, and L. M. Larsen, “The North Atlantic Igneous Province: Plume-Lithosphere Interaction Associated with the Formation of Large Igneous Province,” in Workshop on Plume-Lithosphere Interactions, Strasbourg, 2000, p. 3. J. J. Sederholm, “Ueber die finnlandischen Rapakiwigesteine,” Tschermak’s Mineral. Petrog. Mitt. 12, 1–31 (1891). E. V. Sharkov, “Intraplate Magmatic Systems of the Mid-Proterozoic: An Example of Anorthosite-Rapakivi Gran ite Complexes from the Baltic and Ukrainian Shields,” Ross. Zh. Nauk o Zemle 1(4), 1–26 (1999). D. R. Smith, J. Noblett, D. Wobus, et al., “Petrology and Geochemistry of Late-Stage Intrusion of the A-Type, Mid-Proterozoic Pikes Peak Batholith (Central Colorado, USA): Implications for Petrogenetic Models,” Precambrian Res. 98, 271–305 (1999). S.-S. Sun and W. F. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Spec. Publ. Geol. Soc. London, No. 42, 313–345 (1989). L. P. Sviridenko, Petrology of the Salmi Rapakivi Granite Massif (Karel. Kn. Izd., Petrozavodsk, 1968) [in Russian]. S. R. Taylor and S. M. McLennan, “The Continental Crust: Its Composition and Evolution” (Blackwell, Oxford, 1985). V. P. Trubitsin, “Principles of the Continental Drift Tectonics,” Fiz. Zemli, No. 9, 4–40 (2000). S. A. Tychkov, E. V. Rychkova, and A. N. Vasilevskii, “Plume-Thermal Convection Interaction in Subcontinental Upper Mantle,” Geol. Geofiz. 39(4), 419–431 (1998). D. A. Velikoslavinskii, A. P. Birkis, O. A. Bogatikov, et al., Anorthosite-Rapakivi Granite Formation of the East European Platform (Nauka, Leningrad, 1978) [in Russian]. A. Vorma, “On the Petrochemistry of Rapakivi Granites with Special Reference to the Laitila Massif, Southwestern Finland,” Bull. Geol. Surv. Finland, No. 285, 1–98 (1976). E. Wernick and A. do C. Menezes, “The Late Precambrian K-Alkaline Magmatism in the Ribeira Fold Belt: A Case Study of the Piracaia Pluton, State of Sao Paulo, SE Brazil, and Its Potential Mineralization (Cu, Zn, Gd),” J. Asian Earth Sci. 19, 347–373 (2001). J. B. Whalen, K. L. Currie, and B. W. Chappell, “A-Type Granites: Gechemichal Characteristics, Discrimination and Petrogenesis,” Contrib. Mineral. Petrol. 95, 407–419 (1987). S.-H. Zhang, S.-W. Liu, Y. Zhao, et al., “The 1.75−1.68 Ga Anorthosite-Mangerite-Alkali Granitoid-Rapakivi Granite Suite from the North China Craton: Magmatism Related to a Paleoproterozoic Orogen,” Precambrian Res. 155, 287–312 (2007).