Rank-based poverty measures and poverty ordering with an application to Tunisia
Tóm tắt
Using the normative approach, we develop a class of poverty measures that is function of a weighting system. Each particular weighting function corresponds to a particular social judgment. This offers the decision-maker a large selection of social preferences functions, and he can choose the one that best represents his social judgment. We also develop new concepts of a-extended TIP curves. They are used to establish the conditions of the robust and unanimous poverty ranking of our measures. These conditions are in terms of second-and higher-degree TIP dominance. Finally, we provide an empirical illustration using Tunisian data on the 2005–2010 period.
Tài liệu tham khảo
Aaberge R (2009) Ranking intersecting Lorenz curves. Soc Choice Welf 33(2):235–259. https://doi.org/10.1007/s00355-008-0354-4
Atkinson AB (1987) On the measurement of poverty. Econometrica 55:749–764. https://doi.org/10.2307/1911028
Barrett GF, Donald SG, Hsu YC (2016) Consistent tests for poverty dominance relations. J Econ 191(2):360–373. https://doi.org/10.1016/j.jeconom.2015.12.007
Chtioui N, Ayadi M (2013) A non-monetary multidimensional poverty analysis of Tunisia using generalized Sen-Shorrocks-Thon measures. In: Berenger V, Bresson F (eds) Poverty and social exclusion around the mediterranean sea, series: economic studies in inequality, social exclusion and well-being. Springer, Boston, pp 143–179. https://doi.org/10.1007/978-1-4614-5263-8_6
Dalton H (1920) The measurement of the inequality of incomes. Econ J 30:348–361. https://doi.org/10.2307/2223525
Donaldson D, Weymark JA (1980) A single parameter generalization of the Gini indices of inequality. J Econ Theory 22:67–86. https://doi.org/10.1016/0022-0531(80)90065-4
Donaldson D, Weymark JA (1983) Ethically flexible gini indices for income distributions in the continuum. J Econ Theory 29:353–358. https://doi.org/10.1016/0022-0531(83)90053-4
Duclos JY, Grégoire P (2002) Absolute and relative deprivation and the measurement of poverty. Rev Income Wealth 48(4):471–492. https://doi.org/10.1111/1475-4991.00064
Duclos JY, Makdissi P (2004) Restricted et unrestricted dominance for welfare, inequality and poverty orderings. J Publ Econ Theory 6(1):145–164. https://doi.org/10.1111/j.1467-9779.2004.00160.x
Foster JE (1984) On economic poverty : a survey a aggregate measures. In: Basmann RL, Rhodes GF (eds) Advances in econometrics, 3. JAI Press, Connecticut, pp 215–251
Foster JE, Jin Y (1998) Poverty Orderings for the Dalton utility-gap measures. In: Jenkins S, Kapteyn A, van Praag B (eds) The distribution of welfare and household production: international perspectives. Cambridge University Press, London, pp 268–285
Foster JE, Shorrocks AF (1988a) Poverty orderings and welfare dominance. Soc Choice Welf 5:179–198. https://doi.org/10.1007/BF00735760
Foster JE, Shorrocks AF (1988b) Poverty orderings. Econometrica 56:173–177. https://doi.org/10.2307/1911846
Foster JE, Shorrocks AF (1988c) Inequality and poverty orderings. Eur Econ Rev 32:654–662. https://doi.org/10.1016/0014-2921(88)90212-7
Foster JE, Greer J, Thorbecke E (1984) A class of decomposable poverty measures. Econometrica 52:761–776. https://doi.org/10.2307/1913475
Hagenaars A (1987) A class of poverty indices. Int Econ Rev 28:583–607. https://doi.org/10.2307/2526568
Institute National of Statistics of Tunisia (2012) Mesure de la pauvreté, des inégalités et de la polarisation en Tunisie 2000–2010
Jenkins SP, Lambert PJ (1997) Three ‘I’s of poverty curves, with an analysis of UK poverty trends. Oxf Econ Pap 49:317–327
Jenkins SP, Lambert PJ (1998a) Three ‘I’s of poverty curves and poverty dominance: TIPs for poverty analysis. In: Slottje D (ed) Research on economic inequality volume 8. JAI Press, Greenwich, pp 39–56
Jenkins SP, Lambert PJ (1998b) Ranking poverty gap distributions: further TIPs for poverty analysis. In: Slottje D (ed) Research on economic inequality volume 8. JAI Press, Greenwich, pp 31–38
Kakwani N (1980) On a class of poverty measures. Econometrica 48:437–446. https://doi.org/10.2307/1911106
Kolm SC (1976) Unequal inequalities I. J Econ Theory 12:416–442. https://doi.org/10.1016/0022-0531(76)90037-5
Makdissi P, Mussard S (2008) Analyzing the impact of indirect tax reforms on rank dependant social welfare functions: a positional dominance approach. Soc Choice Welf 30:385–399. https://doi.org/10.1007/s00355-007-0237-0
Mehran F (1976) Linear measures of inequality. Econometrica 44:805–809. https://doi.org/10.2307/1913446
Sen A (1976) Poverty : an ordinal approach to measurement. Econometrica 44:219–231. https://doi.org/10.2307/1912718
10.2307/2232174
Shorrocks AF (1995) Revisiting the sen poverty index. Econometrica 63:1225–1230. https://doi.org/10.2307/2171728
Sordo MF, Ramos HM, Ramos CD (2007) Poverty measures and poverty ordering. SORT 31:169–180
Thon D (1979) On Measuring Poverty. Rev Income Wealth 25 :429-439. https://doi.org/10.1111/j.1475-4991.1979.tb00117.x
Thon D (1983) A note on a troublesome axiom for poverty indices. Economic Journal 93:199–200. https://doi.org/10.2307/2232174
Yaari ME (1987) The dual theory of choice under risk. Econometrica 55:99–115. https://doi.org/10.2307/1911158
Yaari ME (1988) A controversial proposal concerning inequality measurement. J Econ Theory 44(2):381–397. https://doi.org/10.1016/0022-0531(88)90010-5
Zheng B (1999) On the power of poverty orderings. Soc Choice Welf 16:349–371. https://doi.org/10.1007/s003550050149
Zheng B (2000a) Poverty orderings. J Econ Surv 14:427–470. https://doi.org/10.1111/1467-6419.00117
Zheng B (2000b) Minimum distribution-sensitivity, poverty aversion, and poverty orderings. J Econ Theory 95:116–137. https://doi.org/10.1006/jeth.2000.2687
Zoli C (1999) Intersecting generalized Lorenz curves and the Gini index. Soc Choice Welf 16:183–196. https://doi.org/10.1007/s003550050139