Rank-based poverty measures and poverty ordering with an application to Tunisia

Portuguese Economic Journal - Tập 17 - Trang 117-139 - 2018
Naouel Chtioui1, Mohamed Ayadi2
1Département d’Informatique de l’Institut Supérieur des Langues Appliquées et d’Informatique de Béja, Université de Jendouba et UAQUAP, Béja, Tunisia
2Département d’Economie et Méthodes Quantitatives, Institut Supérieur de Gestion et UAQUAP, Université de Tunis, I.S.G, Le Bardo, Tunisia

Tóm tắt

Using the normative approach, we develop a class of poverty measures that is function of a weighting system. Each particular weighting function corresponds to a particular social judgment. This offers the decision-maker a large selection of social preferences functions, and he can choose the one that best represents his social judgment. We also develop new concepts of a-extended TIP curves. They are used to establish the conditions of the robust and unanimous poverty ranking of our measures. These conditions are in terms of second-and higher-degree TIP dominance. Finally, we provide an empirical illustration using Tunisian data on the 2005–2010 period.

Tài liệu tham khảo

Aaberge R (2009) Ranking intersecting Lorenz curves. Soc Choice Welf 33(2):235–259. https://doi.org/10.1007/s00355-008-0354-4 Atkinson AB (1987) On the measurement of poverty. Econometrica 55:749–764. https://doi.org/10.2307/1911028 Barrett GF, Donald SG, Hsu YC (2016) Consistent tests for poverty dominance relations. J Econ 191(2):360–373. https://doi.org/10.1016/j.jeconom.2015.12.007 Chtioui N, Ayadi M (2013) A non-monetary multidimensional poverty analysis of Tunisia using generalized Sen-Shorrocks-Thon measures. In: Berenger V, Bresson F (eds) Poverty and social exclusion around the mediterranean sea, series: economic studies in inequality, social exclusion and well-being. Springer, Boston, pp 143–179. https://doi.org/10.1007/978-1-4614-5263-8_6 Dalton H (1920) The measurement of the inequality of incomes. Econ J 30:348–361. https://doi.org/10.2307/2223525 Donaldson D, Weymark JA (1980) A single parameter generalization of the Gini indices of inequality. J Econ Theory 22:67–86. https://doi.org/10.1016/0022-0531(80)90065-4 Donaldson D, Weymark JA (1983) Ethically flexible gini indices for income distributions in the continuum. J Econ Theory 29:353–358. https://doi.org/10.1016/0022-0531(83)90053-4 Duclos JY, Grégoire P (2002) Absolute and relative deprivation and the measurement of poverty. Rev Income Wealth 48(4):471–492. https://doi.org/10.1111/1475-4991.00064 Duclos JY, Makdissi P (2004) Restricted et unrestricted dominance for welfare, inequality and poverty orderings. J Publ Econ Theory 6(1):145–164. https://doi.org/10.1111/j.1467-9779.2004.00160.x Foster JE (1984) On economic poverty : a survey a aggregate measures. In: Basmann RL, Rhodes GF (eds) Advances in econometrics, 3. JAI Press, Connecticut, pp 215–251 Foster JE, Jin Y (1998) Poverty Orderings for the Dalton utility-gap measures. In: Jenkins S, Kapteyn A, van Praag B (eds) The distribution of welfare and household production: international perspectives. Cambridge University Press, London, pp 268–285 Foster JE, Shorrocks AF (1988a) Poverty orderings and welfare dominance. Soc Choice Welf 5:179–198. https://doi.org/10.1007/BF00735760 Foster JE, Shorrocks AF (1988b) Poverty orderings. Econometrica 56:173–177. https://doi.org/10.2307/1911846 Foster JE, Shorrocks AF (1988c) Inequality and poverty orderings. Eur Econ Rev 32:654–662. https://doi.org/10.1016/0014-2921(88)90212-7 Foster JE, Greer J, Thorbecke E (1984) A class of decomposable poverty measures. Econometrica 52:761–776. https://doi.org/10.2307/1913475 Hagenaars A (1987) A class of poverty indices. Int Econ Rev 28:583–607. https://doi.org/10.2307/2526568 Institute National of Statistics of Tunisia (2012) Mesure de la pauvreté, des inégalités et de la polarisation en Tunisie 2000–2010 Jenkins SP, Lambert PJ (1997) Three ‘I’s of poverty curves, with an analysis of UK poverty trends. Oxf Econ Pap 49:317–327 Jenkins SP, Lambert PJ (1998a) Three ‘I’s of poverty curves and poverty dominance: TIPs for poverty analysis. In: Slottje D (ed) Research on economic inequality volume 8. JAI Press, Greenwich, pp 39–56 Jenkins SP, Lambert PJ (1998b) Ranking poverty gap distributions: further TIPs for poverty analysis. In: Slottje D (ed) Research on economic inequality volume 8. JAI Press, Greenwich, pp 31–38 Kakwani N (1980) On a class of poverty measures. Econometrica 48:437–446. https://doi.org/10.2307/1911106 Kolm SC (1976) Unequal inequalities I. J Econ Theory 12:416–442. https://doi.org/10.1016/0022-0531(76)90037-5 Makdissi P, Mussard S (2008) Analyzing the impact of indirect tax reforms on rank dependant social welfare functions: a positional dominance approach. Soc Choice Welf 30:385–399. https://doi.org/10.1007/s00355-007-0237-0 Mehran F (1976) Linear measures of inequality. Econometrica 44:805–809. https://doi.org/10.2307/1913446 Sen A (1976) Poverty : an ordinal approach to measurement. Econometrica 44:219–231. https://doi.org/10.2307/1912718 10.2307/2232174 Shorrocks AF (1995) Revisiting the sen poverty index. Econometrica 63:1225–1230. https://doi.org/10.2307/2171728 Sordo MF, Ramos HM, Ramos CD (2007) Poverty measures and poverty ordering. SORT 31:169–180 Thon D (1979) On Measuring Poverty. Rev Income Wealth 25 :429-439. https://doi.org/10.1111/j.1475-4991.1979.tb00117.x Thon D (1983) A note on a troublesome axiom for poverty indices. Economic Journal 93:199–200. https://doi.org/10.2307/2232174 Yaari ME (1987) The dual theory of choice under risk. Econometrica 55:99–115. https://doi.org/10.2307/1911158 Yaari ME (1988) A controversial proposal concerning inequality measurement. J Econ Theory 44(2):381–397. https://doi.org/10.1016/0022-0531(88)90010-5 Zheng B (1999) On the power of poverty orderings. Soc Choice Welf 16:349–371. https://doi.org/10.1007/s003550050149 Zheng B (2000a) Poverty orderings. J Econ Surv 14:427–470. https://doi.org/10.1111/1467-6419.00117 Zheng B (2000b) Minimum distribution-sensitivity, poverty aversion, and poverty orderings. J Econ Theory 95:116–137. https://doi.org/10.1006/jeth.2000.2687 Zoli C (1999) Intersecting generalized Lorenz curves and the Gini index. Soc Choice Welf 16:183–196. https://doi.org/10.1007/s003550050139