Rank 2 Nichols Algebras with Finite Arithmetic Root System

I. Heckenberger1
1Universität Leipzig, Mathematisches Institut, Leipzig, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andruskiewitsch, N.: About finite dimensional Hopf algebras. In: Quantum Symmetries in Theoretical Physics and Mathematics (Bariloche, 2000), vol. 294, pp. 1–57, ser. Contemp. Math. (2002)

Andruskiewitsch, N., Schneider, H.-J.: Lifting of quantum linear spaces and pointed Hopf Algebras of order p 3. J. Algebra 209, 658–691 (1998)

Andruskiewitsch, N., Schneider, H.-J.: Finite quantum groups and Cartan matrices. Adv. Math. 154, 1–45 (2000)

Andruskiewitsch, N., Schneider, H.-J.: Pointed Hopf algebras. In: New Directions in Hopf Algebras, vol. 4, ser. MSRI Publications. Cambridge University Press, Cambridge (2002)

Bourbaki, N.: Groupes et algèbres de Lie, Ch. 4, 5 et 6. sér. Éléments de mathematique. Hermann, Paris (1968)

Clifford, A.H., Preston, G.B.: The algebraic theory of semigroups, vol. 7, ser. Math. Surveys Monogr. (1961)

Heckenberger, I.: Examples of finite dimensional rank 2 Nichols algebras of diagonal type. Compositio Math. 143, 165–190 (2007)

Heckenberger, I.: Weyl equivalence for rank 2 Nichols algebras of diagonal type. In: Ann. Univ. Ferrara - Sez. VII - Sc. Mat., vol. LI, pp. 281–289 (2005)

Heckenberger, I.: The Weyl groupoid of a Nichols algebra of diagonal type. Invent. Math. 164, 175–188 (2006)

Kharchenko, V.: A quantum analog of the Poincaré–Birkhoff–Witt theorem. Algebra and Logic 38(4), 259–276 (1999)

Rosso, M.: Quantum groups and quantum shuffles. Invent. Math. 133, 399–416 (1998)